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ABSTRACT

Exploration of language specifications helps to discover er-
rors and inconsistencies early during the development of a
programming language. We propose exploration of language
specifications via application of existing automated first-order
theorem provers (ATPs). To this end, we translate language
specifications and exploration tasks to first-order logic, which
many ATPs accept as input. However, there are several dif-
ferent strategies for compiling a language specification to
first-order logic, and even small variations in the translation
may have a large impact on the time it takes ATPs to find
proofs.

In this paper, we present a systematic empirical study on
how to best compile language specifications to first-order
logic such that existing ATPs can solve typical exploration
tasks efficiently. We have developed a compiler product
line that implements 36 different compilation strategies and
used it to feed language specifications to 4 existing first-
order theorem provers. As a benchmark, we developed a
language specification for typed SQL with 50 exploration
goals. Our study empirically confirms that the choice of
a compilation strategy in general greatly influences prover
performance and shows which strategies are advantageous
for prover performance.
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eTheory of computation — Automated reasoning; Pro-
gram specifications; Program verification; eSoftware and
its engineering — Domain specific languages;
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1. INTRODUCTION

The correct specification and implementation of programming
languages is a difficult task. In a previous study, Klein et al.

This is a preprint for the paper with the same title, to appear at “Principles
and Practice of Declarative Programming (PPDP)” 2016.

have found that language specifications often contain errors,
even when drafted and reviewed by experts [18]. To uncover
such errors, Klein et al. propose lightweight mechanization
(i.e. using a lightweight tool instead of, for example, powerful
interactive theorem provers such as Isabelle [27] and Coq [10])
and exploration of language specifications via execution and
automated test generation. In this paper, we investigate
an approach that is orthogonal to the one from [18]: We
propose the application of automated first-order theorem
provers (ATPs) for exploration of language specifications. To
this end, we study the compilation of language specifications
from a lightweight specification language to first-order logic.
We investigate five typical exploration tasks, which we
formulate as proof goals in first-order logic (here f can rep-
resent the semantics of a language and ground(t) is true if
term ¢ is a value):
v?

Execution of ¢: =
=7

Synthesis for v:
Testing of ¢ and v: i) =w?
Verification of P: vVt P(t)?
Counterexample for P:  3¢. ground(t) A =P(t)?

)

Jo. ground(v) A f(
t

t
3t. ground(t) A f(t)

The technical challenge we address is how to best compile
language specifications to first-order logic such that existing
ATPs can handle the resulting problems efficiently. Our early
experiments showed that even a small change to the compila-
tion strategy can have a large impact on the performance of
the theorem provers (how long it takes to find a proof). This
is because ATPs employ heuristics-driven proof strategies
which often behave differently on semantically equivalent,
but syntactically different input problems.

This paper presents an empirical study where we system-
atically compare a number of different compilation strategies
against each other with regard to how they affect the per-
formance of theorem provers. In our study, we include three
compilation strategies regarding the syntactic sorts of a lan-
guage specification (typed logic, type guards, type erasure),
four compilation strategies regarding the handling of specifi-
cation metavariables (unchanged, inlining, naming, partial
naming), and three compilation strategies regarding simplifi-
cations (none, general-purpose, domain-specific). To this end,
we have developed a compiler product line from language
specifications to first-order logic. We evaluated the perfor-
mance of four theorem provers (eprover 29|, princess 28|,
Vampire 3.0, Vampire 4.0 [20]) for each compilation strat-
egy on the five exploration tasks above. As a benchmark
for a programming language specification, we used a typed
variant of SQL. In total, we collected the running times for
6600 prove attempts.



While we focus on language specifications, the strategies
we identify and our experimental results are relevant for any
project that generates first-order proof goals. In summary,
this paper makes the following contributions:

e We propose to apply existing ATPs for exploring lan-
guage specifications by compiling the specifications to
first-order logic.

e We present 36 different compilation strategies along
3 dimensions. We have developed a compiler product
line that implements all strategies.

e We present a specification of typed SQL with 50 explo-
ration proof goals as a benchmark specification.

e We systematically evaluate the performance of each
compilation strategy on our benchmark specification for
4 theorem provers. Our results confirm that the choice
of a compilation strategy greatly influences prover per-
formance and indicate the most advantageous of our
36 compilation strategies: typed logic with inlining.

2. LANGUAGE SPECIFICATIONS

As a basis for our comparison study, we define a lightweight
core language for specifications of programming languages
called SPL. SPL contains simple constructs for specifying
a language’s syntax, dynamic semantics, static semantics,
and properties. We implemented SPL using the language
workbench Spoofax [17].

2.1 Syntax and Dynamic Semantics

SPL supports closed algebraic and open data types for the
definition of a language’s syntax. For example, we would
specify syntax of the simply-typed lambda calculus like this
in SPL:

open data Var

data Exp = var(Var) | abs(Var, Typ, Exp) | app(Exp, Exp)
data Typ = tvar(Var) | tfun(Typ, Typ)

consts z0: Var; z1: Var; t0: Typ

Data type Var is open, i.e. underspecified, and has no con-
structors. Open data types in SPL are countably infinite.
Data type Exp and Typ are closed and have a fixed number
of constructors. For example, Exp has three constructors:
var, abs, and app. Via the consts construct, one can introduce
names for instances of closed or open data types, e.g. for
describing programs of our language.

For the definition of a language’s dynamic semantics, SPL
supports partial and total first-order function definitions.
For example, we can define the dynamic semantics of the
simply-typed lambda calculus as a deterministic small-step
reduction function as follows:

data OptExp = noExp | someExp(Exp)

function isSomeExp: OptExp — Bool ...
partial function getExp: OptExp -> Exp
getExp(someExp(e)) = e

function reduce: Exp — OptExp
reduce(var(x)) = noExp
reduce(app(abs(x,T,el),e2)) =
if isValue(e2)
then someExp(subst(x, €2, el))
else let €2’ = reduce(e2) in
if isSomeExp(e2')
then someExp(app(abs(x,T,el), getExp(e2')))
else noExp
reduce(...) = ...

Functions isSomeExp and reduce are total functions, that is,
they yield a result for any well-typed input. In contrast,
function getExp has been declared partial because it only
yields a result for a subset of its inputs. Note that an SPL
user has to ensure herself that the subst function used in reduce
avoids variable capture - SPL currently does not provide any
auxiliary support for name binding.

2.2 Inference Rules and Properties

SPL supports the inductive definition of relations via infer-
ence rules. In particular, one can define a language’s type
system using the inference-rule notation.

judgment tcheck(TCtx, Exp, Typ)
// we write (C'F e : T) in place of tcheck(C, e, T)
lookup(x, C) == someTyp(T)

T-var
Chuvar(x) : T
bind(x, S, C)Fe: T

T-abs
Ct abs(x, S, €) : tfun(S, T)
Ct el : tfun(S, T) Che2:5S

T-app

CH app(el, e2) : T

This specification introduces a ternary relation tcheck and
defines it through three inference rules. As usual, all free
identifiers in an inference rule are implicitly universally bound.
Inference rules can have overlapping patterns and the order
in which the rules appear does not matter.

In SPL, we also use the inference-rule notation to define
axioms and proof goals. For example, we can declare an
axiom for the inversion property of the type-checking relation:

axiom
Che: T
T-inv
OR
=> exists x. e == var(x)

lookup(x, C) == someTyp(T)
e == abs(x, T1, e2)

T == tfun(T1, T2)

bind(x, T1, C) F €2 : T2

e == app(el, e2)

Ct el : tfun(S, T)
Che2:5S

=> exists x, €2, T1, T2.

=> exists el, e2, S.

In the conclusion, we declare one alternative for each typing
rule. If e has type T under context C, then either e is a
variable, an abstraction, or an application. We use existential
quantification to name subparts of e and T. The bodies of the
existential quantifiers are conjunctions. The current version
of SPL will automatically generate inversion axioms for total
functions (see next section), but not for relations declared
via the inference-rule notation.

Finally, we can define proof goals using the inference-
rule notation. For example, we can demand a proof of the
weakening property for variable expressions. Note that we
require x is not bound in C (first premise) because we do not
rely on Barendregt’s variable convention.

goal

lookup(x, C) == noTyp Chuvar(y) : T

T-Weak-var
bind(x, S, C) Fvar(y) : T



3. COMPILING SPECIFICATIONS

To enable the exploration of language specifications via first-
order theorem provers on SPL specifications, we compile
language specifications from SPL to first-order logic. Techni-
cally, we translate SPL to TPTP [31], a standardized format
for problems in first-order logic. In this section, we describe
a compilation strategy to typed first-order logic, which sup-
ports typed predicate and function symbols, applications
thereof, Boolean connectives, and typed universal/existential
quantification. In Section[d] we will describe variants of the
compilation strategy from this section.

3.1 Encoding Data Types

To encode closed algebraic data types of the form
data N =ci(T1) | ... | cn(Tn)

in typed first-order logic, we first generate a function symbol
ci : T; — N for each constructor. Second, we generate the
following axioms to specify the algebraic nature of SPL data
types:

1. Constructor functions are injective:

Ak e {1..n} (Y%, V. (X)) =c(y) = Ajxi =v;)

2. Calls to different constructors always yield distinct
results:

/\i;gj Vi, X5 ci(%) # ¢ (x5)
3. Each term of data type N must be of a constructor

form. We call the resulting axiom the domain axiom
for data type N:

Ve:N. V, 3% t =ci(X)

For example, for data type Exp from Section |2.1} we generate
the following function symbols and axioms in typed first-order
logic:

var: Var — Exp

abs: Var x Typ x Exp — Exp
app: Exp x Exp — Exp

V vi:Var, va:Var. var(vi) = var(va) = vi = va

V vi:Var, va:Var, t1: Typ, ta: Typ, e1:Exp, ea:Exp.
abs(vl,tl,el) = abs(vz,tg,eg) = vy =vyg At =tg ANep =ey
V e1:Exp, ez :Exp, e3:Exp, eq:Exp.

app(e1,e2) = app(e3,eq) = e; =e3 Aeg = ey

V u:Var, v:Var, t: Typ, e:Exp, f:Exp, g:Exp.

var(u) # abs(v,t,e) A var(u) # app(f,g) A abs(v,t,e) # app(f.g)

For an open data type N, we generate an axiomatization that
ensures N is countably infinite as desired:

inity : N

enumy : N — N

V x1:N, x2:N. x1 # x2 = enumpy(x1) # enump(x2)
vV x:N. inity # enumpy(x)

Intuitively, these axioms define that the structure of an open
data type N is isomorphic to the structure of the natural
numbers (inity corresponds to the initial element zero, enumy
to the successor).

Finally, we directly translate constant symbols const x: T
to function symbols x: T in typed first-order logic.

3.2 Encoding Function Specifications
We encode partial and total SPL functions of the form

(partial) function f : T ... T, = T
(P11, Pi,n) = €1

f(pm,l ----- Pm,n) =em

in first-order logic by axiomatizing the equations. Specifically,
we apply four translation steps to subsequently eliminate
conditionals, let-bindings, equation ordering, and free vari-
ables. This way, we produce increasingly refined formulas ¢*
for equation ¢ after translation step k.

1. Conditionals: For each if-expression in a function equa-
tion e; of the form f(p) = CJif c t €] for some context C,
we split the equation to handle positive and negative
cases separately:

$ic = c = f(p) = C[t]
Ol - = c = 1(p) = Cle

2. Bindings: For each let-binding in a function equation
e; of the form f(p) = C[let x a b] for some context C,
we add a precondition representing the binding to the
previously produced preconditions pc, 4 (i):

¢7p = p1 (i) A x =a = f(p) = C[b]

3. Equation order: This step encodes the equation order
from the original SPL specification, ensuring that at
most one function equation is applicable for a given
argument pattern no matter how the axioms are or-
dered. For each function equation e; of the form f(p) =
e, we add inequalities NPC' that exclude all function
patterns p; from previously seen equations j < i:

NPO() =\, # 5,

¢23,b = pey (i) A NPC(i) = f(p) =e
The function NPC ensures that variable names in p
and in p; do not clash.

4. Quantify free variables: We close each formula by uni-
versally quantifying over the variables a in function
patterns p and over all other free variables x that ap-
pear in qb?,b.

¢ty = Vavx. @3,

Our implementation also ensures scope preservation for let-
bound variables. For functions that return Boolean values,
after translation, we replace equations f(p) = e, by biimplica-
tions f(p) < e;. This step is necessary since our target format
TPTP [31] does not allow Boolean values as arguments of
equalities or inequalities. For example, we axiomatize func-
tion reduce from Section 2.1] as follows:

reduce: Exp — OptExp
V x: Var. reduce(var(x)) = noExp
V x: Var, x0: Var, T: Typ, el: Exp, e2: Exp.
isValue(e2) A app(abs(x,T,el),e2) # var(x0)
= reduce(app(abs(x,T,el),e2)) = someExp(subst(x,e2,el))
V x: Var, x0: Var, T: Typ, el: Exp, e2: Exp, e2': Exp.
—isValue(e2) A e2'=reduce(e2) A isSomeExp(e2')
A app(abs(x,T,el),e2) # var(x0)
= reduce(app(abs(x,T,el),e2))
= someExp(app(abs(x,T,el), getExp(e2’)))
V x: Var, x0: Var, T: Typ, el: Exp, €2: Exp, €2': Exp.
—isValue(e2) A e2'=reduce(e2) A —isSomeExp(e2’)
A app(abs(x,T,el),e2) # var(x0)
= reduce(app(abs(x,T,el),e2)) = noExp

The first equation of the reduce is encoded almost “as is”, only
quantifying one single free variable. The second equation
is split into three axioms: one for the outer then branch,



two for the two branches in the outer else branch. The two
axioms for the outer else branch both contain the let-binding
inside the branch as precondition. All three axioms for the
second equation contain a precondition which excludes the
previously seen function pattern. Note that here, we could
directly simplify the latter premise by applying one of the
constructor axioms (different constructors). For more com-
plicated pattern matching structures, the NPC inequalities
are less trivial.

Additionally, we encode the inversion property of each total
function with an inversion axiom. The inversion axioms are
not always needed, but often help ATPs to prove the goals we
investigate. We generate the inversion axiom from the axioms
for function equations. Concretely, the inversion axiom for
the formulas ¢;p 1= Va.Vx. pcy (i) = f(B) = e; takes the
form Vpv. \/, (Fa. Ix. (A, pve = pr) A peg (i) A f(pv) = &),
where pv is a sequence of fresh variables introduced for each
function argument pattern px. The inversion property states
that a total function is fully defined by its equations and
that at least one of the equations must hold. Conversely,
the conditions in pc, (i) introduced via NPC ensure that
at most one equation can hold for any pv. This way our
encoding retains the determinism of functions.

For functions with Boolean result type, we generate two
inversion lemmas: one that describes all possible conditions
for the function argument pattern variables pv if the function
returns true, and one that describes all possible conditions
for variables pv if the function returns false.

3.3 Encoding Inference Rules and Properties

We encode inference rules with premises pre; and conclusions
con; as implications (A, pre;) = (/\; con;). The compilation
of the premises and conclusions to first-order logic is straight-
forward and unsurprising. For judgment declarations, we
generate function symbols with return type Bool.

3.4 Using ATPs on Encoded Specifications

Having compiled a SPL specification to first-order logic, we
can easily use any automated first-order theorem provers
for exploring SPL language specifications: On the one hand,
we can pass the compilation of a SPL compilation (without
properties) to an ATP and ask it to prove false to detect
inconsistencies in the specification. For example, Vampire
4.0 typically detects logical contradictions in the specification
within a few seconds. However, if the prover cannot show
false within a given time frame, this does not guarantee the
absence of inconsistencies (which is an undecidable prob-
lem in general). On the other hand, we can pass encoded
specifications with encoded properties to an ATP.

4. COMPILATION ALTERNATIVES

There are many alternative ways to compile an SPL specifi-
cation to first-order logic. Our initial experiments with using
ATPs on compiled SPL specifications revealed that small
differences in the compilation strategy can vastly influence
whether a prover can find a proof within a given timeout.

In this section, we describe alternative compilation strate-
gies to the strategy we presented in Section Based on
our initial experiment, for each variation, we hypothesize
why and how it can influence the prover performance. A
systematic empirical comparison of all variants follows in the
subsequent section.

4.1 Encoding of Syntactic Sorts

The first dimension for generating alternative compilation
strategies concerns the treatment of syntactic sorts like Exp
and Typ. How should we represent such sorts in first-order
logic and how should we declare function symbols that oper-
ate on syntactic sorts?

Typed logic. In Section [3] we used typed first-order logic
and represented sorts as types of that logic. We added typed
signatures for declarations of function symbols and used types
in quantifiers. The advantage of this encoding is that the
theorem provers can exploit typing information. However,
as of today, many automated theorem provers only support
untyped logics and cannot handle this encoding.

Type guards. As alternative to a typed logic, one can use
type guards as for example described in [5]. Type guards are
predicates of the form guardr(t) that yield true only if term
t has sort T. In the above encoding, we declared functions
symbols for functions, constructors, and constants. Instead
of each function declaration f:T— U, we introduce a guard
axiom that describes well-typed usages of f:

Y X1,..., Xn .
guardy, (x1) A ... A guardr, (xn) < guardy(f(x1,....xn))

For the rest of the specification, we introduce guard calls for
all (then untyped) quantified variables as a postprocessing
step. That is, after data types and functions have been
translated into formulas, we apply the following rewritings:
Vx:T. ¢ ~
IAx:T. ¢ ~

V x. guard(x) = ¢
3 x. guardt(x) A ¢

Using these rewritings, we replace all types from the for-
mulas by type guards. Accordingly, the resulting compiled
SPL specification can be passed to any theorem prover that
supports untyped first-order logic.

Type erasure. While type guards make the encoding ame-
nable to many theorem provers, type guards also increase
the number and size of axioms. This may slow down proof
search considerably. As an alternative strategy, we can erase
typing information from the encoding.

In general, the erasure of typing information is unsound,
that is, it does not preserve satisfiability |5]. Specifically, in
a logic with equality and for sorts with finite domain, type
erasure can lead to problems. For example, for singleton sort
Unit, formula (V x:Unit, y:Unit. x = y) holds whereas its erasure
(V x, y. x = y) does not hold in general. This problem occurs
whenever a formula is nonmonotonic, which means it puts
constraints on the cardinality of a sort’s domain. Conversely,
type erasure is sound for sorts with infinite domain [9].

Since we generate sorts from data types in SPL specifica-
tions, we can easily distinguish between sorts with infinite
and finite domains. An SPL data type has an infinite domain
if (i) it is an open data type, which are countably infinite by
definition, (ii) it is recursive, or (iii) it refers to another data
type that has an infinite domain. Otherwise, a data type has
a finite domain. Since we also know all variants of data types
with finite domains, we can fully erase all typing information
as a postprocessing of the translation from Section

if T=c1(T1) | ... | cn(T») has a finite domain:
Vx:T. ¢ ~ Vx (V, 3V x=c;(¥3)) = ¢
Ix:T. ¢ ~  Ix (V; IV x=ci(¥i)) A ¢



if T has an infinite domain:
Vx:T.¢p ~ Vx ¢
Ix:T.¢ ~ 3Ix ¢

The first two rewritings eliminate quantification over finite
domains by inlining the necessary domain information. The
latter two rewritings unify sorts of infinite domains. Hence,
the domain axioms from Section 3.1} point 4 become obsolete,
so we drop them in addition to this post-processing.

Like the type guard strategy, type erasure yields compiled
SPL specifications which can be used with any first-order
theorem prover. But unlike the type guard strategy, type
erasure does not impose additional axioms, and does not
increase the size of axioms that quantify over sorts of infinite
domains. However, the type-erasure strategy leads to larger
axioms for sorts of finite domain.

4.2 Encoding of Variables

The second variation concerns the encoding of bound vari-
ables x = t. Such bindings can occur in user-defined inference
rules or result from our transformations. Is it advisable to
retain such equations or should we eliminate them through
inlining? Or should we rather do the contrary and introduce
bindings for all subterms?

Internally, ATPs typically apply variable elimination strate-
gies, which are supposed to generate the optimal internal
representation. However, even despite this fact, we observed
in our initial experiments that the encoding of variables can
have a huge impact on the performance of provers. This
indicates that the decision how to encode bound variables
matters already on the user level.

Unchanged. In Section [3| we did not specifically consider
bound variables and left them unchanged. That is, we re-
produced bindings exactly as they occurred in the language
specification and exactly how they were generated by our
transformations. Our initial compilation strategy from Sec-
tion [3] only introduces variable bindings for let-bindings and
for function pattern variables pv in inversion axioms. More-
over, type erasure introduces variable bindings for variables
that have a sort with finite domain.

Inlining. We can use inlining to eliminate bound variables.
This may be beneficial for proof search because it decreases
the number of variables for which a prover has to discover a
model and because it reduces the number of literals within a
formula.

The inlining and elimination of a bound variable x = t in
a formula ¢ is sound if ¢ = (x=1t) = ¢¥. We can then
replace ¢ by 1[x :=t], which eliminates the free variable x.
In our implementation, we conservatively approximate the
applicability condition by supporting inlining only for impli-
cations that syntactically appear in ¢. This condition covers
all inlining opportunities that occur in our case study. For
example, in the axiomatized reduce function from Section [3:2]
inlining eliminates the bound variable €2’ = reduce(e2) in the
third axiom as follows:

V x: Var, x0: Var, T: Typ, el: Exp, e2: Exp.
—isValue(e2) A isSomeExp(reduce(e2))
A app(abs(x,T,el),e2) # var(x0)
= reduce(app(abs(x,T,el),e2))
= someExp(app(abs(x,T,el), getExp(reduce(e2))))

Variable introduction. While inlining reduces the number
of variables and literals in a formula, it increases the size of
the remaining literals. In particular, when subformulas occur
multiple times, instead of inlining, it may be beneficial to
introduce new variables and bind them to the subformulas.
This reduces the size of the individual literals by increasing
the number of literals and variables.

The variable-introduction strategy introduces fresh vari-
ables names and bindings for all subformulas, similar to
static single assignment. We make sure to reuse the same
name for syntactically equivalent subformulas, such that re-
occurring subformulas are bound by the same variable. For
example, this encoding introduces names for the third axiom
of function reduce as follows:

V x: Var, x0: Var, T: Typ, el: Exp, €2: Exp, €2': Exp.
vl: Exp, v2: Exp, v3: Exp, v4: OptExp, v5: Exp,
v6: Exp, v7: OptExp.
—isValue(e2) A e2'=reduce(e2) A isSomeExp(e2’)
A vl = abs(x,T,el) A v2 = app(vl,e2) A v3 = var(x0)
A v2 #v3 A v4 = reduce(v2) A v5 = getExp(e2')
A v6 = app(vl, v5) A v7 = someExp(v6)
= v4 =v7

Parameters and result variables. Inlining and variable
introduction represent two extremes of variable handling.
There are several compromises between these two extremes.
We tried several alternatives, including common subformula
elimination, and ultimately chose to include the strategy
that seemed to have the largest effect on our benchmark
specification (see Section [5)) into our study: The strategy
leaves variable bindings from the specification unchanged
and introduces variable bindings for function parameters
and results that appear in conclusions of implications. For
example, the third axiom of function reduce then becomes:

V x: Var, x0: Var, T: Typ, el: Exp, €2: Exp, €2': Exp.
arg: Exp, result: OptExp.
—isValue(e2) A e2'=reduce(e2) A isSomeExp(e2’)
A app(abs(x,T,el),e2) # var(x0) A arg = app(abs(x,T,el),e2)
A result = someExp(app(abs(x,T,el), getExp(e2')))
= reduce(arg) = result

4.3 Simplifications

The third variation of our encoding concerns logical simpli-
fications. Just like for the encoding of variables, theorem
provers also internally conduct general-purpose simplifica-
tions. Again, we observed during our initial experiments that
in some cases, applying logical simplifications before passing
the problems to a first-order theorem prover affected prover
performance and decided to study the effects of simplification
systematically.

No simplification. In Section our encoding did not apply
any simplifications. Consequently, the resulting formulas
may be unnecessarily large or contain superfluous quantified
variables. Without further simplification in the encoding, we
rely on the preprocessing of the theorem provers.

General-purpose simplifications. This encoding exhaus-
tively performs basic general-purpose simplifications like the
following ones on all formulas (fv(¢) denotes the set of free
variables in ¢):



X =X ~ true true V. ¢ ~» true

true Ao ~ o dV ¢ ~ ¢

false A ¢ ~» false VX ¢ ~ Y (xN fv(g)). ¢
o N ~ @ EPaN ~ J(xNfv(p)). ¢
false V¢ ~ ¢

Domain-specific simplifications. We can use domain-spe-
cific knowledge about a language’s SPL specification to sim-
plify the generated formulas. Since theorem provers are
unaware of the original specification, such simplifications are
impossible for them or may require non-local reasoning.

For this study, we focus on investigating domain-specific
simplifications for algebraic data types. Specifically, we
introduce the following simplifications for equations (and
analogously for inequalities) over constructors, where c, c1,
and cy are constructor names:

c(ai,....an) =c(b1,...,bn)
ci(at,....am) = c2(b1,...,by) ~ false

~ai1=by A...ANa, =bpn
ifC1 7‘C2

These rewritings are justified by the axiomatization we give
in Section for algebraic data types. A theorem prover
can do such rewritings itself, but it needs non-local reasoning
to find and apply the data-type axiom. Our domain-specific
simplification can in particular reduce the size of formulas
that encode the pattern matching of functions. For example,
our simplification yields the following axioms for the third
equation of function reduce, eliminating the inequalities that
NPC' generates:

V x: Var, T: Typ, el: Exp, €2: Exp.
—isValue(e2) A isSomeExp(reduce(e2))
= reduce(app(abs(x,T,el),e2))
= someExp(app(abs(x,T,el), getExp(reduce(e2))))

4.4 A Compiler Product Line

We have presented alternative compilation strategies along
three dimensions: 3 alternatives for encoding syntactic sorts,
4 alternatives for handling variables, and 3 alternatives for
simplification. Since the three dimensions are independent,
this amounts to 3 x4 %3 = 36 different compilation strategies.
We have implemented all compilation strategies in a com-
piler product line. Our compiler takes a SPL specification as
input and produces a set of axioms and goals using the stan-
dardized TPTP format [31] that is used in theorem-prover
contests and supported by a great number of automated first-
order theorem provers. By default, our compiler translates
the specification using each of the 36 different compilation
strategies in turn. However, the compiler can also accept a de-
scription of the desired configuration space, such that it only
applies a subset of the available compilation strategies. The
source code of our compiler is publicly available at https://
github.com/stg-tud /type-pragmatics/tree/master /Veritas.

S. BENCHMARK: TYPED SQL

SQL is a data-base query language that traditionally is not
statically typed. Hence, SQL queries that access non-existent
attributes or compare attributes of incompatible types fail at
run time. We use typed SQL as a benchmark for investigating
the exploration of language specifications via compilation to
first-order logic and application of ATPs. We chose SQL as a
benchmark since on the one hand, it is a language of practical
relevance with non-trivial reduction and typing rules. On
the other hand, SQL has no sophisticated binding constructs
for variables, which typically complicates formal reasoning

open data Name // attribute + table names
data AttrL = aempty | acons(Name, Attrl) // attribute list

open data Val // cell values

data Row = rempty | rcons(Val, Row) // row of cell values
data RawTable = tempty | tcons(Row, RawTable) // list of rows
data Table = table(AttrL, RawTable) // header + body of a table

data Exp = constant(Val) | lookup(Name)
data Pred = ptrue | and(Pred, Pred) | not(Pred) // predicates
| eq(Exp, Exp) | gt(Exp, Exp) | It(Exp, Exp)
data Select = all() | some(AttrL) // select all or some attributes
data Query = tvalue(Table) // table values
| selectFromWhere(Select, Name, Pred) // select from where
| union(Query, Query) | intersection(Query, Query) // set ops
| difference(Query, Query)

Figure 1: Excerpt of abstract syntax of SQL in SPL.

function reduce : Query TStore -> OptQuery
reduce(tvalue(t), ts) = noQuery
reduce(selectFromWhere(sel, name, pred), ts) =
let mTable = lookupStore(name, ts) in
if (isSomeTable(mTable))
then let filtered = filterTable(getTable(mTable), pred) in
let mSelected = selectTable(sel, filtered) in
if (isSomeTable(mSelected))
then someQuery(tvalue(getTable(mSelected)))
else noQuery
else noQuery
reduce(union(tvalue(table(all, rtl)), tvalue(table(al2, rt2))), ts) =
someQuery(tvalue(table(all, rawUnion(rtl, rt2))))
reduce(union(tvalue(t), g2), ts) =
let g2’ = reduce(qg2, ts) in
if (isSomeQuery(q2'))
then someQuery(union(tvalue(t), getQuery(q2')))
else noQuery
reduce(union(ql, g2), ts) =
let q1' = reduce(ql, ts) in
if (isSomeQuery(ql'))
then someQuery(union(getQuery(ql’), q2))
else noQuery

function filterTable : Table Pred -> Table
function selectTable : Select Table -> OptTable
function rawUnion : RawTable RawTable -> RawTable

Figure 2: Part of the reduction semantics of SQL.

about a language specification, as investigated for example
in the context of the POPLMARK challenge [1]. We specified
the syntax, type system, and reduction semantics of a typed
variant of SQL queries in SPL. We left out data manipulation,
joins, crossproducts, and some nesting in our model of SQL,
but these features could be easily added in SPL. The source
code of our case study is also available at https://github
com /stg-tud/type-pragmatics/tree/master/Veritas.

Syntax. Figure[l|shows part of our syntactic model for SQL.
We model tables (sort Table) as a list of attribute names
(AttrL) and a lists of rows, which are in turn lists of field values.
SQL queries (Query) evaluate into table values (constructor
tvalue). Constructor selectFromWhere models projection of all
or some attributes of a named table, where each row is filtered
using the predicate of the where-clause. The remaining
variants of Query model set operations.
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judgment tcheck(TTContext, Query, TT)

matchingAttrL(TT, al)
welltypedRawTable(TT, rt)

T-tvalue
TTC - tvalue(table(al, rt)) : TT

lookupContext(tn, TTC) = someT Type(TT)

tcheckPred(p, TT)

selectType(sel, TT) = someT Type(TT2)

T-selectFromWhere
TTC + selectFromWhere(sel, tn, p) : TT2

TTChHql : TT
TTCHq2 : TT
T-union

TTCt+ union(ql, q2) : TT

function matchingAttrL : TType AttrL -> Bool
function welltypedRawTable : TType RawTable -> Bool
function tcheckPred : Pred TType -> Bool

function selectType : Select TType -> OptT Type

Figure 3: Part of the typing rules of typed SQL.

Reduction semantics. Figure [2| shows an excerpt of the
dynamic semantics of SQL and the signatures of the most
important auxiliary functions. We modeled the dynamic

semantics as a small-step structural operational semantics.

The reduction function reduce takes a query and a table store
(TStore), which maps table names to tables (Table). The
reduction function proceeds by pattern matching on the
query.

A table value is a normal form and cannot be further
reduced. A selectFromWhere query is processed in three steps:

1. From-clause: Lookup the table referred to by name in
the query. Since the name may be unbound, the lookup
yields a value of type OptTable. Reduction is stuck if
no table was found. Otherwise, we receive the table
through getTable(mTable).

2. Where-clause: Filter the table to discard all rows that
do not conform to the predicate pred. We use the
auxiliary function filterTable whose signature is shown
at the bottom of Figure [2] We modeled filtering such
that it always yields a RawTable and cannot fail: We
discard a row if the evaluation of pred fails. The type
system will ensure that this can never actually happen
within a well-typed query.

3. Select-clause: Select the columns of the filtered table in
accordance with the selection criteria sel, using auxiliary
function selectTable. We modeled selection such that it
fails if a column was required that does not exist in the
table. Also here, the type system will ensure that this
cannot happen within a well-typed query.

For union queries, reduce defines one contraction case and two
congruence cases. For the union of two table values, we use
the auxiliary function rawUnion that operates on header-less
tables and constructs the union of the rows. In the two
congruence cases of union, we try to take a step on the right
and left operand, respectively. The reduction of intersection
and difference queries is defined analogously to union.

Typing. The static semantics of our variant of SQL ensures
that well-typed queries do not get stuck but evaluate to table
values. We define the type of an SQL query as the type of
the table that the query evaluates to. The type of a table
TT is a typed table schema that associates field types to
attribute names. Type checking uses a table-type context
TTC, which maps table names to table types.

Figure [3| shows an excerpt of the typing rules of SQL and
the most important auxiliary functions used. A table value
has table type TT if both define the same attribute list and
all rows in the table adhere to the table schema as checked
by welltypedRawTable. A selectFromWhere query is well-typed
if the table name tn is bound to TT in the table-type context
TTC, the predicate pred is well-typed for TT, and the attribute
selection selectType succeeds. Like the other set operations,
a union query is well-typed if both subqueries have the same
type.

6. EMPIRICAL STUDY

To study the effect of different compilation strategies on
prover performance, we designed an empirical study based
on the SQL language specification from Section [5| To this
end, we defined 10 proof goals in each of 5 goal categories
(execution, synthesis, testing, verification, counterexample).
Our study aims to answer the following research questions:

RQ1 Do small differences in the compilation strategy affect
prover performance? If yes, how much?

RQ2 Does the strategy for encoding of syntactic sorts influ-
ence prover performance? If yes, how?

RQ3 Does the strategy for encoding variables influence
prover performance? If yes, how?

RQ4 Do simplifications influence prover performance? If
yes, how?

RQ5 When do domain-specific simplification have an influ-
ence on prover performance?

RQ6 Is there a compilation strategy that performs best
for all goal categories? Otherwise, what is the best
compilation strategy for each goal category?

6.1 Goal Categories

In our study, we distinguish 5 goal categories that explore a
language specification in different ways. Below we introduce
the 5 categories in greater detail.

Execution. The first category describes goals that execute
part of the language specification on some input in order to
retrieve the execution result. In principle, using ATPs for this
goal category permits the inspection of semantics that are not
directly executable, such as indeterministic and denotational
semantics. We do not exploit this possibility in our case study,
since we focus on the comparison of compilation strategies
in this paper.

For executing a function f on some input ¢, we encode an
execution goal in first-order logic as follows:

Fv. ground(v) A f(t) = v?

That is, we ask whether there is some value v such that
f(t) computes v. Since mathematical functions are total
and always produce a result, an obvious candidate for v
would be f(¢) itself. If f(t) is undefined in the original SPL
specification, this answer does not yield any insight into
the language specification. Therefore, we require that f(t)



is equivalent to a ground term: A term satisfies predicate
ground if it solely consists of calls to data-type constructors
and references to constants. This way, we force the ATP to
always inspect the axioms that define f.

For our study, we defined 10 execution goals that probe
different parts of the dynamic semantics of SQL. Represen-
tatively, we show one goal here that explores the auxiliary
function rawUnion:

local { different consts rl, r2, r3, r4 : Row
goal
tl == tcons(rl, tcons(r2, tcons(r4, tempty)))
t2 == tcons(r2, tcons(r3, tempty))

execution-2
exists result. rawUnion(tl, t2) == result }

To formulate the goal, we use a built-in feature of SPL to
introduce four constants rl through r4 that represent pair-
wise distinct rows. We use a local block to limit the scope
of these constants. We then define an execution goal that
introduces two raw tables t1 and t2 and calls rawUnion on
them. Note that the name of the goal is significant and
the prefix reveals it is an execution goal. We automatically
introduce ground requirements for existentially quantified
variables like result in execution goals.

Synthesis. The second goal category is dual to the Ezecution
category: Here, we explore whether a specifically given result
v value is producible via an execution, by asking the ATP
to prove that there is a function argument ¢ which produces
the result v:

3t. ground(t) A f(t) = v?

As before, we are only interested in ground terms ¢. For our
study, we defined 10 synthesis goals that explore different
parts of the dynamic and static semantics of SQL. Repre-
sentatively, we show one goal here that synthesizes a query
q and a table store ts such that q is not a value and the
reduction of q in ts is stuck:

goal

synthesis-4
exists ts, . lisValue(q)
reduce(q, ts) = noQuery

Testing. In the third goal category, a user already has an
expectation about a concrete input ¢ and output v of a
function f and wants to test whether this expectation is met
by the specification. This amounts to a quantifier-free proof
goal in first-order logic:

fit) =v?

Here, we rely on the user to make appropriate restrictions
about the groundness of ¢ and v. Again, just as for the
Ezecution category, our approach allows for testing of spec-
ifications that are not directly executable. For our study,
we defined 10 test goals that explore different parts of the
dynamic and static semantics of SQL. Representatively, we
show one goal here that tests that the type checking of a
selection of column b from a table with columns a and b
yields a table with a single column b:

local { consts a, b : Name
ftl, ft2 : FType
n : Name

goal

TT == ttcons(a, ft1, ttcons(b, ft2, ttempty))

TTC == bindContext(n, TT, emptyContext)

sel == some(acons(b, aempty))

TT2 == ttcons(b, ft2, ttempty)

test-7
TTC + selectFromWhere(sel, n, ptrue) : TT2 }

Verification. In the fourth goal category, we consider show-
ing that some property universally holds for a language
specification:

Vit P(t)?

We formulated 10 verification goals to ensure properties of
the dynamic and static semantics of SQL. Naturally, since
we only use ATPs, we cannot prove arbitrary properties just
like this, especially if they require higher-order reasoning,
i.e. induction or the application of auxiliary lemmas. One
can work around this restriction by explicitly passing axioms
which encode necessary lemmas, such as induction hypothe-
ses [11]. For example, we can prove the inductive step of a
theorem stating that intersection preserves typing:

local { consts RT : RawTable

axiom

rtl == RT
welltypedRawtable(tt, rtl1)
welltypedRawtable(tt, rt2)

rawlntersection(rtl, rt2) == rt3

-~

proof-10-IH
welltypedRawtable(tt, rt3)

goal

rtl == tcons(r, RT)
welltypedRawtable(tt, rtl1)
welltypedRawtable(tt, rt2)

rawlntersection(rtl, rt2) == rt3

-

proof-10
welltypedRawtable(tt, rt3) }

We introduce constant RT as induction variable and provide
an induction hypothesis stating that the theorem holds for
rtl == RT. From this, we aim to show that the theorem also
holds when adding another row rtl == tcons(r, RT). The proof
of this goal can be derived by a first-order theorem prover.

For our study, we mostly used simple goals whose prove
does not require any inductive reasoning.

Counterexample. In the fifth and final goal category, we
aim at finding a counterexample t for a property P as an
explanation why the property does not hold:

3t. ground(t) A —P(t)?

Like above, we require that the counterexample ¢ is a ground
term. We defined 10 counterexample goals that disprove
statements about the dynamic and static semantics of SQL.
For example, we can show that table difference on well-typed
tables is not commutative:

goal

counterexample-6
exists rtl, rt2, tt.

welltypedRawtable(tt, rt1)

welltypedRawtable(tt, rt2)

rawDifference(rtl, rt2) != rawDifference(rt2, rt1)



6.2 Automated Theorem Provers

For the purpose of this study, we focus on investigating
the performance of automated first-order theorem provers
that use saturation-based methods or variants of the sequent
calculus to solve problems in first-order logic with equality.
We considered various theorem provers which competed in
the last two CASC competitiond’} Out of these, we identified
four provers which were able to solve a larger number our
proof goals for at least some compilation strategies: Vampire
version 3.0 and Vampire version 4.0 |20], eprover [29], and
princess CASC version [28]. All of these provers support the
standardized TPTP format [31] for theorem provers.

We do not consider SMT (satisfiability-modulo-theory)
solvers such as Z3 [26], since the supported input format
(SMT-lib [2]) differs considerably from TPTP. Hence, the
encoding of our different compilation strategies in SMT-lib
would already differ considerably from the TPTP encoding,
rendering sensible comparisons between compilation strate-
gies difficult. However, it would be an interesting direction
for future work to create different compilation strategies us-
ing the SMT-lib format and to compare the performance of
SMT solvers for the different strategies.

6.3 Experimental Setup

We apply the 36 compilation strategies from Section [£:2]
to the 50 proof goals from Section We run all of these
input problems on the four theorem provers we selected for
our study, which yields a total of 6600 prover calls (and 600
unsupported calls to eprover when using typed logic). We
run our complete study with a prover timeout of 120 seconds,
calling Vampire in CASC mode and eprover in auto mode.
We chose this particular timeout since it yielded the best
overall results on our benchmark for all the four provers we
used. A lower timeout was particularly disadvantageous for
princess, while a higher timeout did not yield substantially
better results. We execute all prover calls on the Lichtenberg
High Performance Computer at TU DarmstathI with Intel
Xeon E5-4650 (Sandy Bridge) 2.7GHz CPUs, allocating 64
cores to each group of calls to one prover (i.e. so that about
64 prover calls in parallel are processed) and 2GB RAM per
core.

As a measure for prover performance, we use the success
rate of the prover on the given category of proof goals for
the timeout of 120 seconds. The success rate for a given goal
category indicates how many of the goals in the category the
prover could prove within the given timeout. We deliberately
excluded both the time to find a proof and the compile time
as a measure for prover performance: We observed that the
compilation strategies which yield lower execution times for
successful proofs are not necessarily the same strategies that
also yield high success rates. For the purposes of this study,
we decided to focus on investigating how the choice of the
compilation strategy affects the overall success rates of the
provers.

7. RESULTS OF THE EMPIRICAL STUDY

In this section, we answer the research questions from Sec-
tion [6] with the data from our experiment. We address each
question individually.

"http://www.cs.miami.edu/ tptp/CASC/24/ and http://
www.cs.miami.edu/ " tptp/CASC/25/
“http://www.hhlr.tu-darmstadt.de/hhlr /index.en.jsp

General effect on prover performance (RQI). We eval-
uate the general effect of different compilation strategies on
prover performance by comparing the distribution of success
rates for our 36 compilation strategies, separately considering
every prover and every goal category. Figure [d visualizes the
distribution of success rates for all 36 compilation strategies
for the 4 provers we used. Each individual boxplot contains
36 success rates, one for each compilation strategy we con-
sider - except for the boxplot for eprover, which contains 24
success rates since eprover does not support typed first-order
logic as input. We observe that the difference between the
smallest and the largest success rate is quite large in almost
every goal category and for every prover, with success rates
sometimes ranging between 10 percent and 100 percent (e.g.
Vampire 3.0, Ezecution category).

We conclude that prover performance depends dramatically
on the compilation strategy, regardless of the prover chosen
and regardless of the goal category used. This observation
confirms that it is worthwhile to study the effects of different
compilation strategies on prover performance more closely.

Effect of sort encoding strategy (RQ2). We compare the
success rates of the 3 different alternatives for sort encoding
against each other for all categories: Figure 5| visualizes, for
each prover, the success rates of our three alternatives for
sort encoding. Each boxplot contains 60 success rates, and
for eprover, we have no data for typed logic (see above). We
observe that the success rates for the strategies that use type
guards are significantly lower than the success rates for the
other two strategies, regardless of which prover was used.
Comparing strategies with typed logic and with type erasure
against each other, there is no clear evidence from the date
whether either of the two alternatives is clearly better. We
observe the same tendency if we look at the individual results
for each goal category.

We conclude that one should avoid using type guards. A
possible explanation for this is that type guards cause an
immense blow-up of the formulas.

Effect of variable encoding strategy (RQ3). We compare
the success rates of different alternatives for variable encoding
against each other for all categories: Figure [f] visualizes, for
each prover, the distribution of success rates for each of
our four variable encoding alternatives. For Vampire and
princess, each boxplot contains 45 success rates, for eprover,
30. We observe that, for all provers, variable inlining and
“unchanged” variable encoding yield better results than the
other two variable encoding strategies in all categories. The
difference in performance between the two naming strategies
and the other two variable encoding alternatives is significant
for some Vampire 4.0 and eprover, but not for the other
two provers. Comparing variable inlining and “unchanged”
variable encoding against each other, we observe a slight,
but not significant, advantage of inlining for all provers. We
observe similar tendencies if we look at the individual results
for each goal category.

We conclude that one should avoid variable naming, and
that variable inlining is a good strategy for most cases. A
possible explanation for this result is that inlining, at least
on our problem specification, often reduced the overall size
of formulas (removing additional premises).
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Figure 4: Prover success rates greatly vary with compilation strategy (RQ1).

Comparison of sort encoding alternatives: All goal categories, prover timeout 120 sec
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Figure 5: Using type guards for sort encoding significantly lowers prover performance (RQ2).

Effect of simplification strategy (RQ4). We compare the
success rates of different alternatives for simplification against
each other for all categories: Figure [7]shows the distribution
of success rates for each of our three simplification alterna-
tives. For Vampire and princess, each boxplot contains 60
success rates, for eprover, 45. We observe that there is al-
most no difference between the three different simplification
alternatives for all provers. For Vampire 4.0 and 3.0 and
eprover, domain-specific simplification seems to be slightly
more advantageous than the other two strategies, but the
difference in performance is not significant. We observe simi-
lar tendencies if we consider look at the individual results
for each goal category.

We conclude that applying simplification strategies to the
input problem does not have any particular effect on prover
performance.

Effect of domain-specific simplification (RQ5). Despite
the results for RQ4, we are interested in discovering whether
there are situations in which applying domain-specific sim-
plifications makes a difference. Comparing many different
setups to each other, we discovered one such situation, vi-
sualized in Figure [8} Here, we focus on combinations of
simplification strategies with strategies that we already iden-
tified as advantageous above. Additionally, we compare the
results for different prover timeouts to each other. The figure
depicts success rates for the different simplification strategies
for all provers together except princess (which had very low
success rates for lower timeouts). Every boxplot contains
50 success rates. We observe that for lower prover timeouts,
domain-specific simplifications indeed increase prover perfor-

mance compared to the other two simplification strategies,
notably for a timeout of only 10 seconds. However, as the
timeout increases, the advantage of domain-specific strategies
shrinks away.

We conclude that domain-specific simplification increases
prover performance for lower prover timeouts when combined
with other advantageous encoding strategies.

Best overall compilation strategies (RQ6). We compare
the success rates obtained for each individual compilation
strategy across all goal categories and all provers we used:
Figure |§| depicts a boxplot diagram with one boxplot for
each of the 36 compilation strategies we investigated. The
individual boxplots contain 20 success rates (strategies with
untyped logic) or 15 success rates (strategies typed logic, not
supported by eprover).

We observe that the compilation strategy that uses typed
logic to encode sorts, inlines variable names, and does not
apply any simplification (“tinn” in the graph in Figure E[)
clearly outperforms all other strategies. This result is mainly
due to Vampire 3.0, which almost always proves all of our
goals when used with strategy “tinn” and with a timeout of
120 seconds. Vampire 4.0 with strategy “tinn” also yields
very high success rates for more than half of our 5 goal
categories, but performs less well for the other half. Among
the strategies that do not use typed logic, there is no clear
candidate for which strategy performs best; however the
strategies with inlining and type erasure seem to have a
slight advantage. Looking at the results of individual goal
categories and/or lower prover timeouts, we observe mostly
similar tendencies. In some cases, the difference between the



Comparison of variable encoding alternatives: All goal categories, prover timeout 120 sec
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Figure 6: Variable inlining slightly improves prover performance (RQ3).

Comparison of simplification alternatives: All goal categories, prover timeout 120 sec
Simplification alternative key (x-axis): l: general-purpose, n: none, p: domain-specific
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Figure 7: Simplification strategies hardly influence prover performance for a timeout of 120s (RQ4).

performance of the “tinn” strategy and other strategies is not
as clear as in Figure[J] For example, in category Testing,
also strategies “tnpn” to “tup” yield success rates as high as
“tinn”.

We conclude that there is a single best compilation strategy
for all goals, namely typed logic and inlining, or type erasure
and inlining (if typed logic cannot be used). Our results for
the previous RQs also apply in combination.

Summary. Our results show that firstly, it is worthwhile
to study the effects of different compilation strategies on
prover performance, even if the strategies only produce subtle
differences in the encoded problems, and even if the strategies
apply optimizations which overlap with what ATPs may do
internally. This result is very likely to hold beyond our case
study and our exploration proof goals.

Secondly, we identified which strategies perform best, at
least for our case study: typed logic and inlining. We believe
that the compilation of other SPL specifications to first-order
logic would yield axiom sets similar in shape and distribution
to the ones from our SQL study, hence our results are likely
to carry over to other case studies.

The complete from our study is available at [http://www
st.informatik.tu-darmstadt.de/artifacts/comp-fol-study/: all
compiled input problems, the complete logs of all provers
on the problems, result summaries, and additional graphs
compiled from our raw data.

8. RELATED WORK

We compare our work to 1) a selection of other approaches
for lightweight mechanization and exploration of language
specifications 2) systems which also encode proof problems
to first-order logic and/or employ tools for first-order logic
for solving them and could hence benefit from the results
we present here, and to 3) similar studies which compare
different compilation strategies to first-order logic against
each other with regard to prover performance.

Lightweight mechanization and exploration. Redex (18]
provides a lightweight specification and exploration envi-
ronment for programming languages. Redex can visualize
test executions and offers randomized testing support for
checking behavioral properties. The approach we propose,
i.e. lightweight mechanization and exploration of language
specifications via compilation to first-order logic and appli-
cation of ATPs, is orthogonal to Redex’ features and could
be added to Redex or similar systems.

Ott [30] is a lightweight metalanguage for specifying pro-
gramming languages. Additionally, it offers consistency
checks of specifications and can translate specifications to
code for various proofs assistants (among them, Isabelle[27]
and Coq|10]). However, Ott does not provide support for
lightweight exploration of a specification: One can use the
generated proof assistant code, but of course, the entry bar-
rier for a non-expert is relatively high. The approach we
suggest could easily be added to Ott to lower the entry bar-
rier, since the syntax of our core language SPL is already
very close to Ott’s syntax (notably, the syntax for inference
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Figure 8: Domain-specific simplifications are

rules). Note that our focus is on the investigation of compi-
lation strategies to first-order logic from a core language for
language specifications, not on the language for specifications
itself. Hence we chose a language which is simpler than Ott’s
or Redex’ language, focusing on core concepts.

Solving problems using first-order logic. There are a
number of general-purpose tools and proof assistants which
translate proof problems to first-order logic and apply auto-
mated theorem provers on them. We discuss a selection of
them:

The intermediate verification language Boogie 2 |16} |14]
translates problems into the SMT-lib [2] format understood
by SMT solvers such as Z3 |26]. Dafny [15] is a programming
language and an automatic program verifier which uses SMT
solvers through Boogie 2. Dafny also supports functions and
algebraic datatypes, but does not encode function inversion
axioms or domain axioms for data types, since such axioms
“give rise to enormously expensive disjunctions” [15|. In our
study, we did not observe problems in prover performance
with such axioms. However, it would be interesting to study
the effects of such axioms on prover performance for larger
specifications. Sledgehammer [7] is a tool for automating
proof steps within the interactive theorem prover Isabelle [33]
using automated theorem provers as well as SMT solvers.
Sledgehammer encodes general higher-order problems from
Isabelle/HOL to first-order logic and SMT-lib. The concrete
encodings are described in detail in [24] [4]. Our encodings
differ from the ones that Sledgehammer uses mostly in the
details whose effect we study in this paper: handling of vari-
able encoding and simplification strategies. Additionally, like
Dafny, Sledgehammer does not explicitly encode function in-
version or domain axioms. The higher-order resolution-based
theorem prover Leo-II 3] cooperates with automated first-
order theorem provers such as the ones we used by encoding
higher-order clauses to first-order clauses. HipSpec [§] is a
system that targets the automatic derivation and proving
of properties about Haskell programs. To this end, HipSpec
internally compiles definitions and properties from Haskell
programs to first-order logic and applies ATPs on them.

All of these tools could benefit from the results of our study
for improving their translations to first-order logic or for
reevaluating detailed design decisions within their encoding
processes. We believe that our results regarding the encoding
of variables may be particularly useful and merit further
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advantageous for lower timeouts (RQ5).

study: For example, both Dafny and Sledgehammer often
introduce auxiliary variables into the first-order compilation
to bind subformulas which are used multiple times in the
specification. Our results indicate that inlining such variables
often increases prover success rate. However, we conducted
our study on a particular set of problems. It would be
interesting to further study for which cases our observation
about variable inlining applies in more general settings. For
example, one could suspect that inlining variables is indeed
beneficial for smaller problem specifications, but not for large
ones.

The Alloy Analyzer |13] is a solver that takes constraints
of a specification of a model in the Alloy language and
tries to find sample structures or counterexamples for these
constraints. To achieve this, the Alloy Analyzer reduces a
problem to SAT (satisfiability checking) by encoding it to
first-order relational logic, which combines elements from
first-order logic and relational calculi [12]. Nitpick |6] ap-
plies the Alloy Analyzer for finding counterexamples for
Isabelle/HOL theorems. The Alloy Analyzer and Nitpick
both use the relational model finder Kodkod [32]. In contrast,
we investigated using automated first-order theorem provers
for exploring whether counterexamples exist. It would be
interesting to compare the performance of automated first-
order provers for detecting the existence of counterexamples
against tools such as Nitpick on a larger set of counterexample
goals.

In previous work, we proposed the design of Veritas [11],
an approach for lightweight mechanization of type system
specifications which aims at using ATPs for automating
proof steps of soundness proofs of type systems and for
applying optimization strategies to type system specifications
for generating efficient type checker implementations. In our
prototype of Veritas, we use a specification language similar
to SPL. While experimenting with Veritas, we observed
that small encoding variations have a large affect on prover
performance, which led us to conduct a systematic study
presented here.

Comparing different compilation strategies. Leino and
Riimmer [16] empirically compare two different variants of
how to translate Boogie 2 types into SMT-lib. They also
observed that type guards significantly lower the performance
of SMT solvers. Meng and Paulson [24] and Blanchette et
al. [b, 4] also investigate different encodings of sorts for
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Figure 9: Prover success rates are best for typed
logic (if available) and inlining (RQ6).

Sledgehammer, notably different variations of partial type
erasure. Our type erasure encoding and our guard encoding
is similar to their encoding variants, but slightly adapts them
to our domain. In their studies, the authors of the cited
papers also observe that full type guards decrease prover
performance, a result which we empirically confirm in our
work. Additionally, Meng and Paulson |24] and Blanchette [4]
also compare different encodings of lambda abstractions
against each other, which is outside of the focus of our study.

In a different study [25], Meng and Paulson investigate
axiom selection for problems encoded by Sledgehammer. We
deliberately did not include any axiom selection in our study,
since we wanted to focus on studying the effects of different
encodings without any interference from axiom selection
strategies. Interestingly, we are able to obtain high success
rates in at least four of our five goal categories even though we
do not apply any axiom selection strategies. Axiom selection
strategies as for example described in [25| [21] are likely to
improve prover performance further.

Kotelnikov et al. [19] investigate the encoding of a number
of constructs which typically occur in language semantics
specifications constructs directly within the Vampire theo-
rem prover. Concretely, they adapt the internal input lan-
guage and calculi of Vampire to support first class Boolean
sorts, let-bindings, and if-then-else expressions. They com-
pare the performance of their encoding strategies with the

pure first-order encoding used by Vampire and observe that
their encoding increases prover performance for problems
which use such constructs. In contrast, we investigate many
different compilation strategies for language specifications
systematically against each other, including, but not limited
to, let-bindings and if-then-else expressions. Another main
difference between our work and the one of Kotelnikov et al.
is that we treat first-order theorem provers as “black boxes”,
while they aim at increasing prover performance by changing
the provers internally. The two methods are likely to be
complementary, and it will be interesting to further study
and compare both directions.

9. CONCLUSION

We proposed applying existing ATPs for exploring language
specifications, by compiling specifications to first-order logic.
To this end, we described and compared 36 alternative compi-
lation strategies along 3 different dimensions (sort encoding,
variable encoding, and simplification) against each other with
regard to how they affect prover performance. We conducted
a systematic empirical study on a benchmark specification
of a typed SQL variant with exploration tasks in 5 different
categories (execution, synthesis, testing, verification, and
discovery of counterexamples).

Our results firstly confirm that even small, seemingly in-
significant differences in the choice of a compilation strategy
has a great influence on prover performance. Secondly, our
results showed that using either a type erasure strategy or
typed logic (if supported by a theorem prover) together with
variable inlining yields the highest prover performances. Ap-
plying simplification strategies in addition is advantageous
when using lower prover timeouts, but hardly influences
prover performance for higher timeouts.

Our results can inform future applications of automated
first-order theorem provers for reasoning about language
specifications and type systems. We plan to apply ATPs
for automatically proving type soundness of a language’s
dynamic semantics |11], of desugaring transformations |22}
23], and of program transformations in general.
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