Abstract

In recent years, the Java Virtual Machine has become an at-
tractive target for a multitude of programming languages, one
of which is Scala. But while the Scala compiler emits plain
Java bytecode, the performance characteristics of Scala pro-
grams are not necessarily similar to those of Java programs.
We therefore propose to complement a popular Java bench-
mark suite with several Scala programs and to subsequently
evaluate their performance using VM-independent metrics.

1 Towards a Scala Benchmark Suite

Previous investigations into the performance of Scala
programs have been mostly restricted to micro-
benchmarking. (The language’s implementers themselves per-
form a number of so-called shoot-outs, each testing a par-
ticular language feature) While undeniably useful to the im-
plementers of the Scala compiler, such micro-benchmarks are
less useful to implementers of a Java VM, who have to de-
liver good performance across a wide range of real-world
programs—only some of which are written in Scala. Thus,
a full-fledged benchmark suite consisting of both Scala and
Java programs is needed.

The following programs (along with potential input data)
have been selected for inclusion in our Scala benchmark suite,
developed as an extension to the popular DaCapo suite [2].
As of this writing, more than half of the implementations are
finished and under evaluation (7).

kiama' The Kiama library for language processing (compiling
Obr, interpreting ISWIM).

lift The Lift web framework, which uses Scala’s actor library to
good effect (running its example application on the Tomcat
Servlet container).

scalac’ The “New” Scala compiler (compiling and optimising
the Scalaz extension library).

scalap’ A Scala classfile disassembler (disassembling a com-
plex classfile).

scalatest ScalaTest, a testing framework supporting various
testing styles, including JUnit and TestNG integrations (run-
ning its own test suite).

specs’ Specs, another testing framework, which makes heavy
use of embedded domain-specific languages (running its
own test suite).

tmt The Stanford Topic Modeling Toolbox, a natural language
processing framework driven by Scala scripts (learning a
model using Latent Dirichlet Allocation).

A few of the above benchmark incorporate a significant
amount of code written not in Scala but in plain Java. This
choice is deliberate, as it reflects current practice; Scala pro-
grams spend a considerable amount of time within the JRE
itself.

Benchmark # Calls
Java JRE Java (other) Scala
avrora 3.29% 96.71% n/a
eclipse 15.64% 84.36% n/a
h2 26.07% 73.93% n/a
luindex 25.69% 74.31% n/a
lusearch 28.43% 71.57% n/a
scalap’ 29.83% 0.04% 70.13%
specs’ 89.99% 0.06% 9.95%
sunflow 16.96% 83.04% n/a
Bytecodes executed
avrora 2.57% 97.43% n/a
eclipse 9.36% 90.64% n/a
h2 26.57% 73.43% n/a
luindex 17.91% 82.09% n/a
lusearch 19.78% 80.22% n/a
scalap’ 51.32% 0.11% 48.57%
specs’ 94.91% 1.33% 3.76%
sunflow 0.052% 99.48% n/a

The following figure relates the benchmarks’ sizes to the Da-
Capo benchmarks’. As can be seen, even simple Scala pro-
grams like scalap consist of thousands of classes, although the
number of (called) methods per class is, in general, lower than
for their Java counterparts.

Methods used
15,920 | .
Yo
<&
Vo)
G
@)
<$ @
% /59. oS),
%, %
: . o
2,486 | e /O/% L}‘OJ‘
8, Q
.. S
7
o % | # Classes used
478 2,389

All of the above measurements were conducted using JP [1],
a tool for VM-independent, complete calling-context profil-
ing. (Due to technical limitations, momentarily only a subset
of benchmarks is covered.)

2 Towards VM-Independent Benchmark Comparisons

In order to make general claims about the similarities of Scala
and Java with respect to performance, VM-independent met-
rics are needed. Moreover, these metrics needs to be rele-
vant in the sense that they correlate with either optimisation
opportunities themselves or with the cost of exploiting said
opportunities. Two such metrics are related in the following
figure.
100%

98% |

96% |

94% |

92% |

90% |

88% |

Instructions executed

86% |

84% |

82% |

2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Methods (ranked)

One novel metric measures the methods’ argument us-
age. (We have already begun collecting information on argu-
ment usage with MAJOR [3].) As Scala supports higher-order
functions, emulating them by means of function objects, it is
of particular interest how a method’s arguments are used, e.g.,
to guide inlining decisions. Consider the following example.

public void example(String[] args) {
Function2 It = new Example$$anonfun$1();
Ordering [tOrdering =
ordering.fromLessThan(lt);
sorting.quickSort(args, ItOrdering);

}

When compiling the above method, inlining quickSort has
a potentially large pay-off, as knowledge about the used
Ordering can be propagated to the point of its actual us-
age. But this optimisation opportunity hinges on the fact

TECHNISCHE
UNIVERSITAT
DARMSTADT

necessary to fully support functional languages on the JVM.
The degree to which tail-calls are used in the aforementioned
benchmarks determines whether such an optimisation would
also be beneficial to existing programs, whether written in
Scala or Java. Moreover, this metric would shed some light on
the Scala compiler’s effectiveness in eliminating tail-calls it-
self. Regardless, the maximum stack depth of Scala programs
is often much higher than for Java programs.

450 |

400 |

350 |

300 |

250 |

200 |

150 |

Maximum stack depth

100 |

S50 |

3 Future Directions

As the semantic gap between Scala source code and Java byte-
code is wider than the gap between Java source and bytecode,
the trade-offs involved in the optimising compiler vs. opti-
mising VM decision needs to be investigated anew. Unlike the
Java compiler, the Scala compiler already performs several op-
timisations on its own: method inlining, escape analysis (for
closure elimination), and tail call optimisation. It is an open
question, however, whether the semantic gap is wide enough
to warrant such re-implementations of optimisations within
the compiler or whether the VM remains the proper place for
optimisations.

Also, Scala targets a second platform besides the JVM,
namely the Common Language Runtime (CLR). This choice,
JVM vs. Common Language Runtime, offers the unique op-
portunity to put all our findings to the test: Are they specific
to a single platform or is a generalisation possible?

References

[1] W. Binder, J. Hulaas, P Moret, and A. Villazén. Platform-
independent profiling in a virtual execution environment.
Software: Practice and Experience, 39:47-79, 2009.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, B. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking develop-
ment and analysis. In Proceedings of the 21st Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 169-190, Portland, Oregon, USA, Oct.
2006.

[3] A. Villazén, W. Binder, P Moret, and D. Ansaloni. MA-
JOR: rapid tool development with aspect-oriented pro-
gramming. In PPPJ ‘09: Proceedings of the 7th Interna-

tional Conference on Principles and Practice of Programming
in Java, pages 125-128, New York, NY, USA, 2009.

Acknowledgments

& CASED

Contact Information

that quickSort invokes methods on its [tOrdering argument
rather than passing it along or simply storing it.

Another metric of interest is the number of tail-calls which
Scala programs exhibit. While the JVM does not yet support
the notion of hard tail calls and thus will not guarantee tail-
call optimisation, such optimisations are often assumed to be

Andreas Sewe
sewe@st.informatik.tu-darmstadt.de
Technische Universitit Darmstadt
Hochschulstr. 10

64289 Darmstadt, Germany

mailto:sewe@st.informatik.tu-darmstadt.de

	Towards a Scala Benchmark Suite
	Towards VM-Independent Benchmark Comparisons
	Future Directions

