
DSL Contest - Evaluation and Benchmarking of

DSL Technologies

Kim David Hagedorn, Kamil Erhard
Advisor: Tom Dinkelaker

September 30, 2009

Contents

1 Introduction 2
1.1 Domain Specific Languages . 2
1.2 Measuring DSL tools . 3

2 The DSL Contest Framework 4
2.0.1 Implementation . 4
2.0.2 Extensibility . 8

3 Examined DSL Tools 10
3.0.3 Apache SCXML . 10
3.0.4 Stratego/XT . 11
3.0.5 AntLR . 12
3.0.6 Bison+Flex . 13
3.0.7 DSL2JDT . 14
3.0.8 Monticore . 15

4 Benchmark Results 17
4.1 Results by Technology . 17

4.1.1 Apache SCXML . 17
4.1.2 Stratego/XT . 19
4.1.3 AntLR . 19
4.1.4 Bison+Flex . 21
4.1.5 DSL2JDT . 22
4.1.6 Monticore . 24

4.2 Comparisons . 27

1

Chapter 1

Introduction

A Domain Specific Language (DSL) is a formal language specified to solve prob-
lems of certain domains. DSLs aim at solving problems faster and easier than
general-purpose languages, but these improvements are traded off by having to
implement a separate DSL for every problem domain. Thereby arises the ques-
tion, how fast and easy new DSLs can be specified and applied to a problem.
Our framework compares several tools to implement DSLs and measures ease
of development and efficiency of the generated tools.

In our model problem we generate tools to read and execute state machines
and test their execution speed by recognizing words of large texts. We compared
six different approaches, of which five are tools to specify a DSL and one is a
pre-existing DSL for state machines (Apache SCXML). We also developed a
framework to compare DSLs, measure development and execution parameters
and automatically generate documents from the test results.

1.1 Domain Specific Languages

Domain Specific Languages are formal languages tailored to specific problem
domains. These problems usually involve computational tasks, so in order to
use a specified DSL one has to provide tools to automatically parse a text in that
DSL to a datamodel and perform computational tasks on the defined model.

It is possible to manually generate such a parser, but is generally not recom-
mended, as the process of parsing a linear text to a multi-dimensional datamodel
is rather complicated and generating a program to do so is a complicated, me-
chanical and error-prone problem. This is why tools for DSLs usually contain
a parser generator, that takes a formal definition of a language, also known as
grammar, and generates a parser, which is a program to read a text and generate
a datamodel from it.

Some parsers are split into the actual parser and a separate lexer or scanner,
which recognizes single tokens such as words and parentheses and passes them
to the parser. These approaches are usually faster, but less flexible, as some

2

keywords of the language can not be used otherwise, for example as variable
names. If a scanner is present in a DSL tool it might be necessary to provide
a table of possible tokens and their meaning, but some tools can also generate
these tables.

The generated datamodel is usually a syntax tree, which contains nodes for
every element of the document and elements that belong to a larger entity, such
as words belonging to a sentence, are grouped as children under that entity. A
developer then has to implement a programm to perform computational task on
this syntax tree. Albeit this is always a manual process, the choosen DSL tool
plays a role as some are restricted in the programming language of the produced
syntax tree. Antlr for example will always generate Java objects and Bison will
usually generate c structs.

1.2 Measuring DSL tools

In the previous section some design choices in the implementation of DSL tools
were presented. To see, how these design choices and further aspects of individ-
ual DSL tools affect ease of implementation and execution speed of generated
tools, this framework measures some parameters regarding development of a
DSL using a certain tool as well as application of the generated tools to a ref-
erence problem. These parameters are:

Development

• Development time: How much time is needed to implement the refer-
ence language using this technology.

• Description of development: How did we precede in the implementa-
tion. Which tools were used to generate which artifacts. Which problems
did we occur?

• Lines of Code: How much lines of code needed to be written.

• Syntactic noise: How exactly can this tool match the reference language.
We measure the textual difference between the reference language and the
language that this tool can process, using the Levenshtein-distance [7].

Execution

• Execution speed: How much time do the generated tools need to process
problems, depending on different input sizes.

• Correctness: Does the produced output match the expected output.

• Memory usage: How much memory did the tools need over time, how
often did Java solutions invoke the garbage collection.

In the following chapter we present our framework that measures these param-
eters and generates a readable document from the result.

3

Chapter 2

The DSL Contest
Framework

2.0.1 Implementation

The DSL Contest Framework is mainly an integrated set of ant build script.
It is designed to support and benchmark DSL technologies implemented in any
computer language. To date we have included six different DSL technologies in
our framework. Four out of these six technologies generate runnable JAVA code,
the other two generate C code. The DSL approaches will be discussed later on
in detail. Every one of the DSL approaches are located in a sub directory under
the root directory of the DSL Contest framework. Every sub directory contains
an ant build script that represents the main control of flow.

We decided to use a state machine representation as the example DSL for
reviewing technologies. This DSL specification should be self explainable.

Listing 2.1: The examined DSL specification
machine Watch {

s t a r t state r e s e t ed {
entry : output ” resetTimer ” ;
transitions {

when s t a r t enter running ;
when switchOf f enter o f f ;

}
}

state running {
entry : output ” startTimer ” ;
perform : output ” loopRunning ” ;
transitions {

when s p l i t enter paused ;
when stop enter stopped ;

}
}

state paused {
entry : output ”pauseTimer ” ;
transitions {

4

when u n s p l i t enter running ;
when stop enter stopped ;

}
}

state stopped {
entry : output ” stopTimer ” ;
transitions {

when r e s e t enter r e s e t ed ;
when switchOf f enter o f f ;

}
}

state o f f {
exit : output ” switchOf f ” ;
transitions {

when toEnd end ;
}

}
}

To this day we have implemented a couple of benchmark and data mining
tasks that are executed by the respective sub ant build file.

The benchmark tasks deal with the following situation. A concrete state ma-
chine gets generated and is supplied together with a file of events, representing
transition events. The state machine starts in its specified start state. An event
producer reads events line for line and sends them as input to the concrete state
machine. The concrete state machine executes these transitions and changes its
state. If the state machine enters an end state, it terminates.

For the benchmark and data mining tasks we generate a concrete state ma-
chine capable of recognising input texts. The input text is simultaneously trans-
formed into a line for line list of events. Each event represents one character of
the input text. The example input text is a 512 KiB character text.

In the following we enumerate the targets of the build scripts, explain the
semantic meaning and state in general how they are implemented.

build

The build target builds any necessary code needed by the benchmark and data
mining tasks. In general this will build parser and lexer code for the given DSL
specification.

clean

The clean target just cleans any generated files, therefore restoring the original
file and directory set.

5

benchmark

The benchmark target is just an alias for running all other benchmark and data
mining targets, enumerated hereafter.

runtime
The runtime target runs the concrete state machine with the full input text and
measures the runtime. The following data is written in the sub directory:

• benchmark-results/N/time: The total time measured

• benchmark-results/N/machine.sm: The used concrete state machine

• benchmark-results/N/machine.events: The used file of events

• benchmark-results/N/machine.expectedOutput: The expected state transitions

• benchmark-results/N/output: The actual state transitions

• benchmark-results/N/num-states: The size of the input text used for the concrete state
machine

runtimes

The runtimes target calls the runtime target a specified number of times (10).
The first runtime call will use only one chunk of the full input text. The second
call will use two chunks and so on. The Nth (10th) call is identical to a regular
runtime call. The data is written in the directory benchmark-results/i/, where
i stands for the ith iteration.

space

The space target tries to measure the used space of the DSL technology. Cur-
rently it only supports the measurement of JAVA technologies and measures
heap size and garbage collection statistics.

• benchmark-results/space/total-time: The total time measured

• benchmark-results/space/gc-time: The time used by the garbage collection

• benchmark-results/space/gc-counts: The number of times the garbage collection was
executed

• benchmark-results/space/heap-Usage: The usage of the heap size during 100ms inter-
vals

• benchmark-results/space/max-heap-size: The maximal size of heap used

• benchmark-results/space/gc-percentage: The fraction of gc-time and total-time

6

loc

The loc target counts the number of lines and characters of given files. It
counts separately generated and user written files. Furthermore it tries to count
effective lines and characters of code in both cased, by trimming whitespaces
and removing comments.

• benchmark-results/loc/lines-generated: The number of generated lines of code

• benchmark-results/loc/elines-generated: The number of generated effective lines of
code

• benchmark-results/loc/lines-userwritten: The number of user written lines of code

• benchmark-results/loc/elines-userwritten: The number of user written effective lines
of code

• benchmark-results/loc/chars-generated: The number of generated characters of code

• benchmark-results/loc/echars-generated: The number of generated effective characters
of code

• benchmark-results/loc/chars-userwritten: The number of user written characters of
code

• benchmark-results/loc/echars-userwritten: The number of user written effective char-
acters of code

• benchmark-results/loc/lines-total: The number of total lines of code

• benchmark-results/loc/elines-total: The number of total effective lines of code

• benchmark-results/loc/chars-total: The number of total characters of code

• benchmark-results/loc/echars-total: The number of total effective characters of code

validity

The validity target just validates that the output produced by a concrete state
machine is equal to the expected output. In this case it checks whether the
state machine performs the right state transitions.
• benchmark-results/N/valid: true if benchmark-results/N/machine.expectedOutput is equal

to benchmark-results/N/output. Otherwise false.

environment
The environment target gathers some interesting information about the envi-
ronment runtime. Currently it prints some information about the used JAVA
Virtual Machine version and the operating system.
• benchmark-results/java-version: The JAVA version used by ant

• benchmark-results/java-vm: The JVM used by ant

• benchmark-results/timestamp: The time of the benchmark execution

syntactic-noise

The syntactic-noise target calculates the syntactic noise between the reference
DSL specification and the one used by the DSL technologies. Currently it gets
calculated with the Levenshtein distance [7].
• benchmark-results/levenshtein-distance: The calculated levenshtein-distance

7

documentation

The documentation target integrates the results and outputs of the bench-
mark and data-mining targets and creates a Latex document out of it. Therefore
it gets called after the benchmark target.

Individual results are named results*.inc.tex, where * is a wild card for any
character. All found results*.inc.tex files will be concatenated. The concate-
nated results document will be included in this document’s Benchmark Result-
s/Results by Technology section.

Comparisons with other technologies are named comparisions*.inc.tex and
will also be concatenated. The concatenated comparisons document will be
included in this document’s Benchmark Results/Comparisons section.

2.0.2 Extensibility

The DSL contest is designed to be extended both with new DSL technologies
for review and new benchmark and data mining tasks. In the following section
we show a step by step introduction for adding a new DSL technology. The
antlr technology is considered as our reference implementation.

Example: Adding a new Technology

1. Create a new sub directory under the root directory named after the DSL
technology

2. Generate the necessary parser, lexer and runtime code for the supplied
reference DSL specification. The runtime code should take two arguments:
the location of the concrete state machine and the location of the list of
events for the concrete state machine, as explained earlier

3. Create a build.xml file in the sub directory with the targets explained
earlier or copy the skeleton-build.xml file located in the root directory

4. Modify the build target to generate the runtime code including the parser

5. Write the other needed targets either by using the help targets in com-
mon.xml with the respected arguments or by implementing it yourself.
Assure that you output the results in the locations specified earlier.

6. Create a directory doc and create a file called ”name” with the name
of the DSL technology. Furthermore append a short description about
the technology and the implementation process in a file called ”descrip-
tion.inc.tex”.

7. Set up the projects you want to benchmark and document by modifying
the fileset pattern in the root build.xml file in the DSL Contest folder. For
example exclude some technologies by using the exclude attribute.

8

8. Now you should be able to call the benchmark and build-pdf targets of
the root build.xml file in the DSL Contest folder.

9

Chapter 3

Examined DSL Tools

3.0.3 Apache SCXML

Description

Apache SCXML [1] is not a tool to generate DSL but an example for a pre-
existing DSL for state machines.

SCXML is a XML representation of a state machine. Apache provides the
SCXML Commons, which are a set of Java utilities to parse and execute SCXML
files to a Java execution model. A developer can then send events to this state
machine or register listeners to get notified of state changes.

Usage in DSL Contest

In this case there was no grammar or parser that needed to be implemented,
all that was needed was a generator to create state machine definitions in
the SCXML format (SCXMLGenerator.class) and a SCXMLRunner.class that
parses a file to a state machine using the SCXMLParser.parse-method.

To do so it was necessary to implement two different error reporting classes
(ErrorHandler, ErrorReporter) and a Evaluator class that - in this case -
is only responsible for creating new Context Objects. The printing of output
messages by adding a custom tag to SCXML did not work, so a workaround was
implemented as a Listener (PrintStateListener), that simply prints a state’s
name at every state change.

Development Experience

Integrating SCXML into our project took approx. five hours, of which one
was dedicated to develop a custom generator that produces correct SCXML
state machines and four hours to implement a class that parses a state ma-
chine, feeds it with events and prints the output to the desired location. Two

10

of these four hours were dedicated to fix a bug that prevented Apaches XML
parser (XMLDigester) from correctly recognizing custom SCXML tags. Since
this problem seemed not to be resolvable, a workaround was implemented that
simply prints a state’s name on transitions.

3.0.4 Stratego/XT

Description

Stratego [5] and the XT transformation tools are a collection of tools to represent
data structures as terms and to manipulate them using formal rules.

They use ATerms (annotated terms) as formal representations of graphs.
A term has a name (Constructor) followed by a set of subterms as content in
parentheses. A text can be parsed to a structured ATerm using the SDF tools.
These tools need a parse table that equates to a grammar definition. Such an
ATerm can then be modified using rewrite rules. A rule has an ATerm as left-
hand side that represents the current term and a right-hand side that represents
the term after rewriting. A rule is made abstract by introducing variables for
subterms.

Several rules can be composed to a strategy, that declares the sequence of
rules and possible traversing of the term. An ATerm can finally be written back
to a plain text files using additional rewrite rules.

Usage in DSL Contest

This implementation parses a state machine definition to an ATerm, rewrites it
to an ATerm representation of a Java source file and translates this term to a
Java program representing a concrete state machine.

The Lex.sdf file defines individual tokens and the The StateMachine.sdf
defines their composition to an ATerm representation of a state machine. These
files are composed to a parser table for the sglri-tool that parses state machine
files to aterms. The aterm2java.str-strategy defines rules to translate ele-
ments such as states and transitions to ATerm representations of Java code frag-
ments and composes them to a Compilation Unit, a representation of a complete
class file. This strategy is compiled to a c program using the strc-command.
The output of the resulting aterm2java-program is then fed to pp-java, a tool
that converts ATerm representations of Java source files to pretty-printed Java
sourcecode. This Java source code is then compiled to a class that represents
the defined state machine.

The created Java class is a subclass of AbstractStateMachine, an abstract
state machine model that was written for this approach. States can be added
to this machine using inlined subclass declarations of the abstract class State
and binding them to a class variable name. This was necessary to avoid the
Java method size limit of 64K per method. The AbstractStateMachine class

11

also provides the execution model to run event files on a StateMachine.

Development Experience

Development of a state machine DSL using Stratego/XT took 12 hours in to-
tal. Defining a grammar to read a state machine definition to an ATerm was
straightforward and quickly accomplished. Term rewriting and strategies in
general were also no complicated task, but creating an ATerm representation of
a Java program (adhering to the syntax understood by pp-java) was compli-
cated and time consuming. The java-tools provided by the Stratego/XT website
allow direct inlining of java code in the right-hand side of rewrite rules, but this
approach did not work here for some ugly masking/unmasking issues. Therefore
all elements of the state machine had to be translated to large ATerm represen-
tations of classes, methods or variables.

3.0.5 AntLR

Description

Source: http://www.antlr.org

ANTLR, ANother Tool for Language Recognition, is a language tool
that provides a framework for constructing recognizers, compilers,
and translators from grammatical descriptions containing actions in
a variety of target languages. ANTLR automates the construction
of language recognizers. From a formal grammar, ANTLR generates
a program that determines whether sentences conform to that lan-
guage. In other words, it’s a program that writes other programs.
By adding code snippets to the grammar, the recognizer becomes
a translator or interpreter. ANTLR provides excellent support for
intermediate-form tree construction, tree walking, translation and
provides sophisticated automatic error recovery and reporting. Text
from the AntLR homepage.

Usage in DSL Contest

AntLR was used to generate a parser and lexer for the given DSL specifica-
tion. We created a file containing the grammar in Extended BackusNaur Form
(grammar/Statemachine.g) This file includes also the Tokens for the lexer.

AntLR stand alone does not generate concrete model code, but rather builds
an abstract syntax tree. Therefore we wrote a simple state machine (src/antl-
r/fsm) ourselves and inlined java instructions directly in the grammar file and
let AntLR build our state machine. By using Hashtables for the transitions and
states we assured a pretty fast implementation.

12

Running AntLR on the grammar file resulted in the parser (src/antlr/generat-
ed/StateMachineParser.java) and lexer (src/antlr/generated/StateMachineLexer.java).

The runtime class src/antlr/run/Runner.java uses the parser and lexer to
read a given input state machine in the specification format and instantiates
a concrete state machine. This concrete state machine can be used in the
benchmark tests together with a given events file.

Development Experience

Developing in AntLR was pretty easy. The software is well documented and and
writing the grammar in EBNF is easy. The lack of model code generation is
compensated by allowing the inclusion of java code directly in the grammar file.
This results in a very powerful but rather low level code. Splitting of grammar
files allows a modularised approach.

The development took a short time. Approximately three hours were used to
the grammar file. Five Hours were used to write the semantics.

3.0.6 Bison+Flex

Description

GNU bison [3] is a open source implementation of the UNIX program yacc and
generates a parser from a context-free grammar in Backus-Naur-Form. As bison
does only generate a syntactical analyzer, it needs a separate lexical analyzer
(scanner). This implementation uses the flex [2] scanner generator to perform
this task.

Usage in DSL Contest

Every token in a bison grammar is associated with a c type, so all elements of
the abstract syntax tree have to be provided as a c header file (statemachine.h)
that provides the needed types as structs. The rules are defined in a grammar
file (statemachine.y). Every rule is associated with some lines of c code that
set up the neccesary data structures and associate the rule with a return value
($$), using the tokens of the rules right-hand side ($1 ... $i). bison generates
a c program containing an yyparse() method that parses texts in the defined
language to c structs.

A bison parser needs a scanner like flex to identify terminals and associate
them with types. How tokens are identified and associated with types is done
by providing a scanner definition (statemachine.l) that defines every token as
a regular expression and associates it with a c code snippet that returns an
integer value indicating the token’s type. flex generates a c program providing
an yylex() method, that identifies tokens and can be used by the parser.

13

An execution model for the state machine had to be implemented by hand
(statemachine.c). The generated program invokes the yyparse()-method to gen-
erate a struct-representation of an input file and follows transitions specified by
an event file. It uses hashtables (gHashTable) to look up states and transitions
and saves a pointer to the following state on the first visit of a transition.

Development Experience

Implementing the state machine language with flex and bison took approxi-
mately 25 hours. About 7 hours were needed to understand the structure of
bison and flex and to generate a scanner and a parser. The rest of the time
was needed to implement a representation of a statemachine as c structs and
to implement an execution enginge for state machines. A large part of that
time (approx. 10h) was needed to debug the creation of structs and of the en-
gine, which is a time-consuming task with c programs. These bugs were mainly
segmentation faults. Since bison will reuse its internal variables ($$, $1 .. $i)
and will not allocate memory for each token, a programmer has to dynamically
allocate memory for every token that he wants to use after parsing.

3.0.7 DSL2JDT

Description

The Eclipse Java Development Tools (JDT) excels at supporting the
editing and navigation of Java code, setting the bar for newer IDEs,
including those for Domain Specific Languages (DSLs). Although
IDE generation keeps making progress, most developers still rely on
traditional ways to encapsulate new language abstractions: frame-
works and XML dialects. We explore an alternative path, Internal
DSLs, by automating the generation of the required APIs from Ecore
models describing the abstract syntax of the DSLs in question.

Most embedded DSLs, while offering a user-friendly syntax, are frag-
ile in the sense that the IDE does not flag the embedded statements
that break the well-formedness rules of the DSL (because the IDE
checks only the well-formedness of the host language, usually Java).
To address this issue, we leverage the extension capability of Eclipse
to detect at compile-time malformed DSLs expressions. The tech-
nique relies on mainstream components only: EMF, OCL, and JDT.

Usage in DSL Contest

DSL2JDT [6] was used in conjunction with EMF and Ecore. While EMF and
Ecore generated the model code, DSL2JDT generated the Parser. We started by
writing an Ecore description of our DSL specification, resulting in a XML rep-
resentation of an Entity-Relationship-Modell (ecore/statemachine.ecore). EMF
was then used to built model code (src/dsl2jdt/generated) out of the ecore
model. Finally DSL2JDT generated a parser (src/dsl2jdt/generated/StateMachineExprBuilder.java).

14

All these steps were done in the Eclipse IDE. Building outside of Eclipse seems
to be impossible, because all of these tools are plugins for Eclipse, therefore an
integration in our ant build system was not possible.

The generated parser accepts input in form of instantiated JAVA objects.
During developing this makes perfect sense, but has a serious limitation. JAVA
classes have a size limit. In our case during benchmarking we exceed this limit.
Therefore we wrote a simple transformer (smGen/DSL2JDTLetterTree.java),
that reads a state machine specification, creates an object iteratively out of it
and serialises it. Later on the serialised object can be used for benchmarking.
We defined the semantics of the state machine in src/dsl2jdt/run/StateMachineRunner.java.
This class takes the serialised object and an event file as input, starts the ma-
chine and executes the transitions, specified by the events.

The generated model code uses collections with linear lookup time for the
states and transitions, although we specified maps and keys in the ecore model.
This would significantly increase the runtime speed, therefore we used a custom
hashtable as a cache for looked up states and transitions. The cache can be
switched off by an command line argument for better comparison.

Development Experience

The creation of the ecore model was pretty easy. It took some time to realise,
that EMF would always use collections with linear lookup time, instead of maps
with key/value pairs. The usage of fluid interfaces looks pretty good and makes
it very elegant to write a DSL with it. Although we have not really tested it, the
integrated support of a powerful IDE like eclipse should be very comfortable.

Approximately two hours were used to write and validate the ecore model.
The semantics (StateMachineRunner) required another three hours. The Build-
ing of the mentioned transformer consumed another two hours.

3.0.8 Monticore

Description

Monticore [4] is a framework for an efficient development of domain-
specific languages (DSLs). It processes an extended grammar format
which defines the DSL and generates components for processing the
documents written in the DSL. Examples for these components are
parser, AST classes, symboltables or pretty printers.This enables
a user to rapidly define a language and use it together with the
MontiCore-framework to build domain specific tools.

15

Usage in DSL Contest

We used Monticore to generate both parser and lexer and furthermore model
code. Monticore uses internally AntLR for parser and lexer generation but
extends them with its needed functionality. Monticore is a client/server appli-
cation. The parsing of the grammar file is done on client side, further processing
is done on the Monticore server. We wrote a Monticore grammar file for our
DSL specification (grammar/def/monticore/generated/StateMachine.mc). The
syntax is written in EBNF and therefore similar to the one of antlr.

Running Monticore on the grammar requires an user account on Monticore’s
website. It then generates model code (src/monticore/generated/ ast) and the
parser and lexer (src/monticore/generated/ parser).

We defined the semantics of the state machine in src/monticore/run/StateMa-
chineRunner.java. This class takes a state machine in the specification form and
an events file, starts the state machine and executes the transitions according
to the events file.

The specification file had to be modified. It was not possible to use the
keyword ”start state”. Although we modified the parser/lexer look-ahead, it did
not work, therefore we used ”start state”. Furthermore we could not use double
quotation marks, so we used single ones. In AntLR both situations worked
without modification. This will of course have an impact on the syntactic noise.

Monticore generated collections with linear lookup time for states and tran-
sitions, therefore we added, as in the case of DSL2JDT, a hashtable cache.

Development Experience

The development was straight forward. Knowing AntLR one would not have
problems with Monticore. Furthermore Monticore provided a rich documenta-
tion.

However there were some issues. The compiling process was done by the
Monticore server. During our development the server crashed several times. It
seems their software crashes frequently due to malformed client input. Every
time we had to contact their administrator which resulted in various time lags.

Approximately four hours were used to the grammar file. Two hours were
used to write the semantics.

16

Chapter 4

Benchmark Results

4.1 Results by Technology

4.1.1 Apache SCXML

General Data

• Valid output: true

• Syntactic Noise (Levenshtein distance): 770

• Java VM: OpenJDK 64-Bit Server VM

• Java version: 1.6.00

• Benchmarking date: 29.09.09 12:41:29

Lines of Code

total generated user written
original 168 0 168
effective 112 0 112

Characters of Code

total generated user written
original 5462 0 5462
effective 4584 0 4584

17

Benchmark Runs

Text lenght [kb] Runtime [ms]
1 51 5295
2 102 7388
3 153 9251
4 204 11561
5 255 13035
6 307 15405
7 358 17661
8 409 19550
9 460 20905
10 511 24115

Runtime Diagram

4

6

8

10

12

14

16

18

20

22

24

26

1 2 3 4 5 6 7 8 9 10

runtime [s]

input text [chunks]

4
4

4

4
4

4

4
4

4

4

Heap Allocation

Input Text [KiB] 512
Max Heap Size [MiB] 395

Garbage Collection Counts 46
Garbage Collection Runtime [ms] 766

Total Runtime [ms] 24791
GarbageCollectionRuntime

TotalRuntime [ms] 0.031

18

Heap Allocation Diagram

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25

heap size [MiB]

runtime [s]

4.1.2 Stratego/XT

4.1.3 AntLR

General Data

• Valid output: true

• Syntactic Noise (Levenshtein distance): 1

• Java VM: OpenJDK 64-Bit Server VM

• Java version: 1.6.00

• Benchmarking date: 29.09.09 13:40:28

Lines of Code

total generated user written
original 2068 1752 316
effective 1669 1443 226

Characters of Code

total generated user written
original 57271 51203 6068
effective 54567 48877 5690

19

Benchmark Runs

Text lenght [kb] Runtime [ms]
1 51 1704
2 102 2353
3 153 3037
4 204 3650
5 255 4687
6 307 5292
7 358 5806
8 409 6241
9 460 7326
10 511 8051

Runtime Diagram

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

runtime [s]

input text [chunks]

4
4

4
4

4
4

4
4

4
4

Heap Allocation

Input Text [KiB] 512
Max Heap Size [MiB] 115

Garbage Collection Counts 5
Garbage Collection Runtime [ms] 143

Total Runtime [ms] 7510
GarbageCollectionRuntime

TotalRuntime [ms] 0.019

20

Heap Allocation Diagram

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

heap size [MiB]

runtime [s]

4.1.4 Bison+Flex

General Data

• Valid output: true

• Syntactic Noise (Levenshtein distance): 0

• Java VM: OpenJDK 64-Bit Server VM

• Java version: 1.6.00

• Benchmarking date: 29.09.09 12:46:26

Lines of Code

total generated user written
original 4493 4011 482
effective 2904 2551 353

Characters of Code

total generated user written
original 114655 104494 10161
effective 73573 65875 7698

21

Benchmark Runs

Text lenght [kb] Runtime [ms]
1 51 66
2 102 89
3 153 130
4 204 147
5 255 173
6 307 210
7 358 209
8 409 209
9 460 237
10 511 329

Runtime Diagram

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10

runtime [s]

input text [chunks]

4
4

4
4

4

4 4 4
4

4

4.1.5 DSL2JDT

General Data

• Valid output: true

• Syntactic Noise (Levenshtein distance): 1060

• Java VM: OpenJDK 64-Bit Server VM

• Java version: 1.6.00

• Benchmarking date: 29.09.09 12:46:44

22

Lines of Code

total generated user written
original 3661 3405 256
effective 1416 1210 206

Characters of Code

total generated user written
original 100750 93768 6982
effective 49723 43053 6670

Benchmark Runs

Text lenght [kb] Runtime [ms]
1 51 4594
2 102 7522
3 153 11456
4 204 14436
5 255 19762
6 307 24337
7 358 29130
8 409 34929
9 460 38786
10 511 45904

Runtime Diagram

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

runtime [s]

input text [chunks]

4
4

4
4

4
4

4

4
4

4

23

Heap Allocation

Input Text [KiB] 512
Max Heap Size [MiB] 56

Garbage Collection Counts 6
Garbage Collection Runtime [ms] 82

Total Runtime [ms] 40772
GarbageCollectionRuntime

TotalRuntime [ms] 0.0020

Heap Allocation Diagram

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45

heap size [MiB]

runtime [s]

4.1.6 Monticore

General Data

• Valid output: true

• Syntactic Noise (Levenshtein distance): 14

• Java VM: OpenJDK 64-Bit Server VM

• Java version: 1.6.00

• Benchmarking date: 29.09.09 12:52:25

Lines of Code

total generated user written
original 5495 5243 252
effective 4006 3816 190

24

Characters of Code

total generated user written
original 152955 147294 5661
effective 110508 105153 5355

Benchmark Runs

Text lenght [kb] Runtime [ms]
1 51 4139
2 102 7268
3 153 10394
4 204 14329
5 255 23096
6 307 22373
7 358 26581
8 409 31285
9 460 34943
10 511 39234

Runtime Diagram

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

runtime [s]

input text [chunks]

4
4

4

4

4 4

4

4
4

4

25

Heap Allocation

Input Text [KiB] 512
Max Heap Size [MiB] 106

Garbage Collection Counts 5
Garbage Collection Runtime [ms] 188

Total Runtime [ms] 39384
GarbageCollectionRuntime

TotalRuntime [ms] 0.0048

Heap Allocation Diagram

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

heap size [MiB]

runtime [s]

26

4.2 Comparisons

Runtime Comparison

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

runtime [s]

input text [chunks]

3 3 3 3
3 3 3 3

3 3

+
+

+
+

+

+

+

+

+

+

2

2

2

2

2 2

2

2

2

2

? ? ? ? ? ? ? ? ? ?

4
4

4
4 4

4
4

4 4
4

Legend

AntLR 3

DSL2JDT +
Monticore 2

Bison+Flex ?
SCXML 4

27

Runtime Overhead relative to AntLR

−100

0

100

200

1 2 3 4 5 6 7 8 9 10

overhead [percent]

input text [chunks]

? ? ? ? ? ? ? ? ? ?

+

+

+ +

+
+

+

+ +

+

2

2

2

2

2

2
2

2 2
2

4 4 4 4
4 4 4 4 4

4

AntLR y=0
DSL2JDT +
Monticore 2

Bison+Flex ?
SCXML 4

28

Bibliography

[1] Apache SCXML Website. http://commons.apache.org/scxml.

[2] Flex Website. http://flex.sourceforge.net.

[3] GNU Bison Website. http://www.gnu.org/software/bison.

[4] Monticore Website. http://www.monticore.de.

[5] Stratego XT. http://www.strategoxt.org.

[6] Miguel Garcia. Automating the embedding of Domain Specific
Languages in Eclipse JDT. Eclipse Corner Article, 2008. Avail-
able at http://www.eclipse.org/articles/printable.php?file=Article-
AutomatingDSLEmbeddings/index.html.

[7] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Doklady Akademii Nauk SSSR, 1965.

29

