
Hands-on Training

Software Development Tools
Summer Semester 22

TuCan-No: 20-00-0673-pr
Course Type: 4SWS / 6 CPs

Workload: ~180hours

Prof. Dr.-Ing. Mira Mezini

1

Process

● Today: Send an e-mail with your three preferred topics and why you are the right
person for these topics to: leonid.glanz@tu-darmstadt.de

● Tomorrow: Assignment of topics

● Next: Contact your supervisor to discuss details of your topic

● During Practicum: Bi-weekly meetings with supervisor in an agile process

● Discuss the current state and the next steps

● End of September: Final submission of artifacts

2

Secure/Parallel Code Execution
In app security reviewers analyze certain behaviors of the app and may
execute dangerous code. In order to support them we need an secure
environment for the execution.

• Task: Establish a secure JVM environment to execute such code.
• Languages & Frameworks:
• Needed Experience: Java, other things can be learned as you work
• Suitable for: 1 – 2 people
• Contact: leonid.glanz@tu-darmstadt.de

3

mailto:glanz@cs.tu-darmstadt.de

Resolving Useless Usages of
Dynamic Loading

During a static analysis, dynamically loaded code cannot be analyzed and
so important information could be missed.

• Task: Identify all useless usages of dynamic loading and replace it with
static code

• Languages & Frameworks: OPAL
• Needed Experience: A bit Scala, the rest can be learned as you work
• Suitable for: 1 – 2 people
• Contact: leonid.glanz@tu-darmstadt.de

4

mailto:leonid.glanz@tu-darmstadt.de

Anti-Debugging Detection
Malware authors can use anti-debugging techniques to evade dynamic
analysis, which then cannot detect malware hidden in this manner.

• Task: Identify anti-debugging code and replace it with direct code
execution calls.

• Languages & Frameworks: OPAL
• Needed Experience: A bit Scala, the rest can be learned as you work
• Suitable for: 1 – 2 people
• Contact: leonid.glanz@tu-darmstadt.de

5

mailto:leonid.glanz@tu-darmstadt.de

Visualization of Security Information
In order to get an overview of an app many small analysis need to be
executed and their results show to the user.

• Task: Implement small analyses and visualize their results on a website
• Languages & Frameworks: OPAL, Bash, Vue.js/React …
• Needed Experience: Everything can be learned as you work
• Suitable for: 1 - 2 people
• Contact: leonid.glanz@tu-darmstadt.de

6

mailto:glanz@cs.tu-darmstadt.de

Data Flow to Critical Points
During an app security review, the flow of sensitive data is examined to
identify potential leaks.

• Task: Identify all points that read/write external resources to track
potential data leakages

• Languages & Frameworks: OPAL
• Needed Experience: A bit Scala, the rest can be learned as you work
• Suitable for: 1 – 2 people
• Contact: florian.breitfelder@tu-darmstadt.de

7

mailto:glanz@cs.tu-darmstadt.de

Field Source Detection
Various analyses focus on the data flow between methods, however, if
fields contain important information, these are missed.

• Task: Identify usages of specific fields and report, which instructions
use these fields.

• Languages & Frameworks: OPAL
• Needed Experience: A bit Scala, the rest can be learned as you work
• Suitable for: 1 person
• Contact: florian.breitfelder@tu-darmstadt.de

8

mailto:leonid.glanz@tu-darmstadt.de

Visualising Data Flows
After analysis of the sensitive data flows these flows need to be shown to
the analyst.

• Task: Visualize all data flows to show the dangers of data leakages in
Android Apps

• Languages & Frameworks: OPAL D3.js
• Needed Experience: A bit Scala, the rest can be learned as you work
• Suitable for: 1 - 2 people
• Contact: florian.breitfelder@tu-darmstadt.de

9

mailto:glanz@cs.tu-darmstadt.de

Taint Analysis for WebAssembly/JS
The analysis should track tainted data between WebAssembly and
JavaScript
• Task: Write a Taint Analysis for WebAssembly from and to JavaScript

based on our WebAssembly framework WasmA in Combination with
TAJS

• Languages & Frameworks: Go, Java, WasmA, TAJS
• Needed Experience: Go, Java and experience with analysis

frameworks, (Taint Analysis)
(Can also be learned during the work)

• Suitable for: 1 person
• Contact: roth@cs.tu-darmstadt.de

10

mailto:roth@cs.tu-darmstadt.de

Taint Analysis for SQL
The analysis should determine whether tainted data is written into a
database and read from a database.

• Task: Write a Taint Analysis for SQL that checks a Java program for sql
statements and determines whether tainted data is written into and
possibly again returned from a database

• Languages & Frameworks: Java, SQL
• Needed Experience: Java, SQL, (Taint Analysis)
• Suitable for: 1 person
• Contact: roth@cs.tu-darmstadt.de

11

mailto:roth@cs.tu-darmstadt.de

Taint Analysis for Java/Javascript
The analysis should track information flows between Java/Javascript

• Task: Write an analysis in OPAL, that determines whether JavaScript is
called and then hand it over to TAJS and the other way around

• Languages & Frameworks: Java, JavaScript, Opal, TAJS
• Needed Experience: Java, JavaScript, (Taint Analysis)
• Suitable for: 1 person
• Contact: roth@cs.tu-darmstadt.de

12

mailto:roth@cs.tu-darmstadt.de

GitHub Data Set Crawler
The crawler should crawl Java projects from GitHub with different filters, e.g.,
stars, commits, activity, then it should build the projects, and collect information
of API usages, e.g., JCA.

• Task: Write a crawler that collects open-source Java projects based on
different filters. The crawler is extended with a functionality to automatically
build the projects. Further, it should collect information about API usages.

• Languages & Frameworks: Java/Scala/Go/Python, Docker, opt. Bash
• Needed Experience: Experience with one of the languages, the rest will be

learned as you go
• Suitable for: 1-2 people
• Contact: wickert@cs.tu-darmstadt.de

13

mailto:wickert@cs.tu-darmstadt.de

Benchmark Evaluation Suite
The benchmark evaluation suite should be able to execute different crypto API misuse
detection tools on existing source code and binaries. Furthermore, the results should be
parsed and unified across the different detection tools.

• Task: Implement a benchmark evaluation suite that can execute different crypto API
misuse detection tools such as CogniCrypt and CryptoGuard on provided source
code and binaries. Write a parser that unifies the different output formats from the
detection tools.

• Languages & Frameworks: Java/Scala/Go/Python, Docker, opt. Bash
• Needed Experience: Experience with one of the languages, the rest will be learned

as you go
• Suitable for: 1-2 people
• Contact: wickert@cs.tu-darmstadt.de

14

mailto:wickert@cs.tu-darmstadt.de

Positions & Theses

If you are interested in HiWi
Positions or Bachelor- or Master

theses contact:
leonid.glanz@tu-darmstadt.de

15

mailto:glanz@cs.tu-darmstadt.de

