Design and Implementation of
Modern Programming Languages
(Seminar)

Contact

By mail:
* Ragnar Mogk
— mogk@cs.tu-darmstadt.de

* Pascal Weisenburger
— weisenburger@st.informatik.tu-darmstadt.de

Timeline

topic selection: 8.11 (Sunday after kick-off)
paper submission: 18.12
peer review submission: 15.01
feedback meetings: 18.01-22.01
camera ready: 29.01
presentation day: 12.02
Start Early!
Please let us know if you have a
conflict with the presentation day

The Seminar

Start with several papers of a specific topic
Understand the general area

Find more references to complete your
understanding

Write your own paper about in that area
— Tell a coherent story about one aspect of the topic.

— Please present technologies, with your own words and
your own examples.

E.g. : the same running example through the paper

What you learn

* Introduce students to the core techniques of

scientific work

— Process of writing and publishing research papers
— Review a paper

— Give a scientific talk

* Learn an advanced topic on PL
— Compare and evaluate existing solutions

Reviews

A summary of the paper
— To demonstrate that you read and understood

e Suggestions for the author, regarding both content

and presentation
— Be realistic and concrete

* A list of the major positive and negative issues
— Honest! mainly used to grade the reviewer, not the paper

Grades

Find the details and more info of how to write the
paper on the website

Paper 40 %
Talk 40 %
Reviews 20 %

Once more. Tell a nice story. Compare things. Find
advantages and limitations. Provide examples in
different cases

Implementation of
Programming Languages
(Project)

Intro

Goal: Implement a software artifact supporting
current research.

General scope: programming languages:
— Extensions, code generators

— Tools, IDEs

— Analysis techniques

— Performance assessments

— Prototypes with innovative abstractions

Process

Project details are specified by discussing with your

supervisor.
— Periodic discussions/meetings.

Allocate one day per week to work on the project

— Send us an email about the weekly progress.

— Not an issue If you have no time for 1 or 2 weeks
* Don’t abuse this.

Presentation and delivery of the artifact and the
documentation: end of the semester.

Guidelines and Suggestions

Deliver RUNNING code

Deliver some documentation
Optional: final presentation / demo to discuss your

work

Team work is good!
— Organize a team even with people you don’t know (yet)

Grades

How much of the specification was implemented?

The code has to run

What is the overall quality of the code?
— E.g. is it painful to modify/extend it?
— |s it self-documenting?

What is the quality of the “documentation”?

SEMINAR TOPICS

Programming Languages
for Smart Contracts

"an open, distributed ledger that can record
transactions between two parties efficiently and in a
verifiable and permanent way.”

 How to write smart contracts?
* Need a (specification?)
language...

Some examples

* "Functional Smart Contracts”
— Chakravarty et al. 2019. Functional Blockchain Contracts.

— Seijas and Thompson. 2018. Marlowe: Financial Contracts on
Blockchain. ISoLA.

* Object-Oriented Smart Contracts

Coblenz Obsidian: a safer blockchain programming language.
ICSE 2017.

— Coblenz, et al. 2019. User-Centered Programming Language
Design in the Obsidian Smart Contract Language.

— Coblengz, et al. 2019. Obsidian: Typestate and Assets for Safer
Blockchain Programming

— Schrans et al. Writing safe smart contracts in Flint. Programming
2018

Programming models for
Distributed Computing

* Very popularin the ’80, early ‘90

* A lot of ideas still influential
— RMI, CORBA, Argus, Emerald, Akka, Linda

e Survey of the most

important approaches distributed
programming

Heather Miller

Nat Dempkowski

James Larisch
Christopher Meiklejohn

https://github.com/heathermiller/dist-prog-book

Information Flow in

Languages for Distributed Systems

e Distributed systems can leak private data
* Information flow type systems can prevent it

— Attach security labels to values
— Reject programs in case of violation

e Current Research topics
— Interaction with distribution
— Boundaries with databases
— Big data

https://en.wikipedia.org/wiki/Information_flow_(information_theory)

varl, h
if h = true
then
|:=3
else
| :=42

Macros and Metaprogramming

 tools and ideas on how to program interpreters and
compilers

* survey on history of macro systems

* what features should modern languages support?

Fig. 1. Timeline of metaprogramming languages and systems; the list is not exhaustive.

TOPICS

Consistency in PL

Process Process Process

e Distributed systems

adopt a consistency level é}
— Eventual consistency ' ' '

— Causal consistency \

Distributed data store

Local copy

e So far, considered only in the middleware

Consistency in Distributed Systems

]
s 2=/ a
N

“

https://dl.acm.org/citation.cfm?id=2611290
https://dl.acm.org/citation.cfm?id=3104044

Consistency Levels form a Lattice

Serializability

/\

Causal consistency

N~

Eventual consistency

No consistency

Eventual consistency
Causal consistency
Fifo consistency

= Menu Gl
Amazon DynamoDB Q

Developer Guide (API Version 2012-08-10)

([Documentation - This Guide

! namoDB?

= - - Sign In to the Console

AAWS Documentation » Amazon DynamoDB » Developer Guide » What Is Amazon DynamoDB? » Amazon DynamoDB: How It
Works » Read Consistency

English

Read Consistency

Amazon DynamoDB is available in multiple AWS regions around the world. Each region is completely
independent and isolated from other AWS regions. For example, if you have a table called People in

DATASTA GLOSSARY SUPPORT DEVELOPER BLOGS the us-east-1 region and another table named People in the us-west-2 region, these are
considered two entirely separate tables. For a list of all the AWS regions in which DynamoDB is
Apache Cassandra™ 2.1 (Supported) Cassandra 2.1 (used by DSE 4. nts available, see AWS Regions and Endpoints in the Amazon Web Services General Reference.
E APl . .) - . - -
About Cassandra What's new caL Understanding the architecture Planning a deployment Installing Every.AYVS region con5|§ts of rT1uIt|p|e dIStl-nCt‘|fDCatI0nS called A"a"a?"'tY Zones. Fach Availability
nd Data Zone is isolated from failures in other Availability Zones, and to provide inexpensive, low-latency
Initializing a cluster ~ Security ~ Database internals ~ Configuration ~ Operations ~ Backing up and restoring data network connectivity to other Availability Zones in the same region. This allows rapid replication of
Cassandratools References ~ Moving data to/from other databases ~ Troubleshooting Release notes ncy your data among multiple Availability Zones in a region.
roughput When your application writes data to a DynamoDB table and receives an HTTP 200 response (0K), all
.- copies of the data are updated. The data will eventually be consistent across all storage locations,
E ata
Searc r‘ usually within one second or less.
QL DynamoDB supports eventually consistent and strongly consistent reads.
Advanced search .
DB Eventually Consistent Reads
) . X . - Pe When you read data from a DynamoDB table, the response might not reflect the results of a recently
Home / Database internals / Data consistency / Configuring data consistency > = N N . .
DynamoDB completed write operation. The response might include some stale data. If you repeat your read
- request after a short time, the response should return the latest data.
Configuring data consistency Strongly Consistent Reads
9 9 Database internals tion with DAX il
Consistency levels in Cassandra can be configured to manage availability versus data Storage engine Access Control When you reques_t astrongly consistent rea.d, Dyn_amoDB rejturns a response with the most up-to-
accuracy. You can configure consistency on a cluster, datacenter, or individual /O AR date Idata, reflectlr?g the updates _from ?II prior write operations that were successful. A strongly
operation basis. Consistency among participating nodes can be set globally and also DB consistent read might not be available in the case of a network delay or outage.
controlled on a per-operation basis (for example insert or update) using Cassandra’s Cassandra storage basics
’ A, ynamoDB Note
drivers and client libraries. .
The write path of an update) X X
er AWS Services DynamoDB uses eventually consistent reads, unless you specify otherwise. Read
+ Write consistency levels About rameter:
About R R A A uring the
This table describes the write consistency levels in strongest-to-weakest order. wri::s ongo O D &
Reads
v Write Consistency Levels
o How d M DB '
Level Description Usage concul OW Oes O ngo enSU re ConS |Stency?
ALL A write must be written to the Provides the highest consistency Data ¢
commit log and memtable on all and the lowest availability of any Abo Back to Table of Contents
replica nodes in the cluster for other level.
that partition. Abol
partt — MongoDB is consistent by default: reads and writes are issued to the primary member of
EACH_Q Strong consistency. A write must Used in multiple datacenter feat a replica set. Applications can optionally read from secondary replicas, where data is
UORUM be written to the commit log and clusters to strictly maintain c
memtable on a quorum of replica consistency at the same level in I eventually consistent by default. Reads from secondaries can be useful in scenarios
nodes in all datacenter. each datacenter. For example, cor h it table for data to b lightl t of dat h i
choose this level if you want a Rea whnere It IS acceptable Tor aata 1o be sligntly out oT date, sucnh as some reporting
read to fail when a datacenter is . applications. Applications can also read from the closest copy of the data (as measured
by ping distance) when latency is more important than consistency.
Learn more in the MongoDB Architecture Guide. 23

ConSysT Programming Framework

class Concert {
Date date;
Ref<@Weak ConcertHall> hall;
Ref<@Weak Band> band;
Ref<@Strong Counter> soldTickets;

}...

Programming model supports
explicit consistency levels

Information flow static analysis
ensures safe mixing of consistency levels

ConSysT

Tunable, safe consistency meets object-oriented
programming.

https://consyst-project.github.io/

What is ConSysT?

ConSysT is an distributed object-oriented language. Objects can be replicated with
different levels of consistency. The type system ensures that consistency levels are mixed

safely.
Multiple Safe mixing of Object-oriented
consistency consistencies programming
levels The static type system Consistency is fully
ensures correct mixing integrated with object-

Each replicated object
comes with its own
consistency level.

of consistency levels. oriented abstractions.

Overview

In ConSysT, the main abstraction are replicated objects that are fully integrated into an
object-oriented language. Replicated objects have a consistency level specified by the
developer.

Distribution

Easily distribute your your data across your local network, datacenters or geo-replicated
devices. Replicated objects allow to distribute and perform operations on your data. As
ConSysT is implemented as a language extension to Java, you can create replicated

Extending ConSysT

e Consistency can be associated to types e.g., High[Int]
— Design consistency for operations, e.g., shopCheckout()

e Language support for multiple consistency levels on
top of existing middleware, e.g., Cassandra

CRDTs

A data structure which can be replicated across multiple computers where
replicas can be updated independently and concurrently without coordination,

and where it is always mathematically possible to resolve inconsistencies
Example: collaborative editing

CRDT: Grow-only counter

Applications =7 o 174

* Redis: a distributed, highly available and scalable in-memory database
Riak: a distributed NoSQL key-value data store based on CRDTs

Facebook implements CRDTs in their Apollo low-latency "consistency at scale" database

Delta CRDTs

* Implementation of CRDTs in Scala
* Delta replication for efficiency

e Composability of CRDTs.
How to derive new CRDTs by composition?

https://arxiv.org/abs/1803.02750

Tierless/Distributed Languages

Tierless Languages

* Traditional development of Web applications
— Server side (e.g. servlet, php script, ..)
— Client side (Javascript, ...)

* Tierless languages unify the development of server-

side and client-side components
— Network communication is hidden
— The compiler automatically generates the code for the

server and for the client

https://github.com/scala-loci

Placement Types

trait Registry extends Peer .

trait Node extends Peer _

val message: Eventis®auidtry Placement Types
= placed { getMessageStream() }

Scalaloci

Research and development of
language abstractions for
distributed applications in Scala

Coherent

|mp|emem‘ a cohesive
distributed application in a
single multitier language

Comprehensive Safe

Freely express any

Enjoy static Type»scn(ety
distributed architecture

Aacross componenfs

Specify Architecture

Define the architectural relation of
the components of the distributed
system

§ ¥ Specify Placement

Control where data is located and
computations are executed

trait Server extends Peer {
type Tie = Multiple[Client]
}

trait Client extends Peer {
type Tie = Single[Server]

val items = placed[Server] {
getCurrentItems()

val ui = placed[Client] {
new UI

}

www.scala-loci.github.io

Dynamic placement

a—

Data streams
cross Tier

boundaries

hildoyTeg:

Sinagl;

dedut actionitaDuration: KDlmAntnation!
cecallFune act i

[dnsprite runhction: [ccsequance actions: fadeout,

‘o FONT_SANPLE BOT11

get

self selecto
callsune, il
(void)_delayrdRenoueChild
[5€1f renoveChiLédyTag:KDinTy
oragna rark - erfogically | And o

(void)undin

cesprite *dinsprite
ir

(1dinsprite) return;

[sef gotchildbyTog:koinTag);
CCFadeOut *fededut Fadesut. actioriitnduration:kpimanination!
cecalirunc “callfunc
[dnsprite rurkctior
)

oragra mark - erfotically

Dynamic
Placement

- {void)undin
Cesprite “dinsprite = (
i (1dinsprite) return;
CCFadeOut Afededut

cecoliFune “callFun

iTagl;
(cc

adedut actionkitaDuration: kDl inatian!
(#1n8prite rurkctions (CCSequance actions: fadedu

CallFunc actioritnTerget:self selecto

callfune, nil)
(void)_delayedRenoueChild
[5€1f renovaCnilédyTe

oragna mark - Perfodica

“~

Compiler
splits the
code

Application
deployment

loT & Edge: Drones

Dynamic
Placement

Distributed Garbage Collection

* Expensive in the general case!

e Use a type system to track ownership
— The type system guarantees that there

are no other refs to an object
— The object can be deleted e

strateqgy

https://soft.vub.ac.be/amop/research/dgc

Secure Tierless Languages

* Place functionalities based on privacy requirements

— Function f(x) may run on the server or on the client
— Decide based on the privacy of x

integrity labels
Challenges: g

label projection

* Information flow analysis — j
e Decision at runtime?

v partitioning
server/
Located weblL code client

placement
CPS conversion \ Java
client
code

GWT
Y
Java Swift Java GWT Swift JavaScript
server server serviet [—r=—pwl runtime client client
code runtime || framework [HTTP | library runtime code
Web server Web browser

Secure Web Applications via Automatic Partitioning

Secure Tiers

* Intel Software Guard Extensions (SGX)
 Code running inside secure enclave can be seen as a

separate tier

e Automate secure deployment

1 Intel® SGX Application

Untrusted Code Trusted Code

Create Enclave Process Secrets

6)

Call Trusted Return

©

Normal
Execution Call gate

Privileged System Code
OS, VMM, BIOS, SMM

Dynamic Software Updates

e Complex component-based
systems require updates

without downtime <)\>

* When is an update safe?

| Portal | Auth | Proc | DB
° DeveIOp 3 System for Vv A ‘-_g_etToken(_cred),» --------------------------------
return token 1
safe dynamic updates % c | procstokendate
T, . verify(token
gl 5 S B OK:qubop() _____ - M-

https://dl.acm.org/citation.cfm?id=3084561

Distributed Reactive Programming

Reactive Programming

REScala is a Scala library for functional reactive programming on the JVM and the Web. It provides a rich AP for
event stream transformations and signal composition with managed consistent up-to-date state and minimal
syntactic overhead. It supports concurrent and distributed programs.

Flexible Consistent Thread-safe
Abstractions for Events and No temporary inconsistencies, no Multi-threaded applications are
Signals. Integrating with imperative, data races, no surprises. Write fully supported. Reactive
object-oriented, functional and any code which behaves as expected. abstractions can be safely
other paradigm on the JVM. accessed from any thread and they

are updated in parallel.

Visit the manual to get started.

Project Description

Software applications react to external changes such as the input from the user and network messages.
Traditionally, object-oriented software adopts the Observer pattern to implement reactivity and decouple the
observers from the observables. Whereas researchers have highlighted the drawbacks of this style for a long time,
alternatives struggle to be widely accepted. In particular, functional reactive programming and dataflow
programming — which aim to represent time-changing values as first class abstractions - are promising, but hardly
escape the functional setting. On the other hand, event-based languages directly support events but do not
achieve the declarative style of more functional approaches.

REScala is a reactive language which integrates concepts from event-based and functional-reactive programming
into the object-oriented world. Rescala supports the development of reactive applications by fostering a functional
and declarative style which complements the advantages of object-oriented design.

Contributors

List<String> myList = Arrays.asList("al1", "a2", "b1", "c2", "c1");
myList.stream()
filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
forEach(System.out::printin);

www.rescala-lang.com

* Mira Mezini
* Guido Salvaneschi

loT & Edge: Distributed Dataflow

Manage dataflow graph of many devices
Use device specific effects for inputs & outputs
Efficient compilation

Failure modes? Dynamic placement? CRDTs?

Delay Tolerant Routing

 Some networks have long delays
— Inter Planet!
— Hand USB sticks to your friends
— |IP Datagrams on Avian Carriers (RFC 1149)

* Special routing protocols exists
* Integrate with

A VN A @ . e
dataflow g A fo >
é' oo A ' ,'l o 3
Inter-planet /Sl 0300000 ~—=gln
. communication Q ‘
Battlefield networks
Bopde Tl ' A"‘"%\“ P p
2 l TTes -~ ~ Emergency response
' - @ |~ systems
| ==l
.l \ Providing Internet from city to

A ﬁ% B Bus networks

Village villages

Staged Dataflow Graph

* dotty (new scala version) has a staged macro system
e can this be used to imlement dataflow graphs during
compile time?

dotty Architecture
Scala Sources Scala Sources
v < > v
dotty Frontend (—T nsc|
v ~\ v
AST TASTY Pickled AST
. v
dotty Transforms | nsc Transforms
Simplified AST Simplified AST
/
/
GenBCode
v

Classfiles

QUESTIONS?

