
Design and Implementation of
Modern Programming Languages

(Seminar)

Contact

By mail:
• Ragnar Mogk
– mogk@cs.tu-darmstadt.de

• Pascal Weisenburger
– weisenburger@st.informatik.tu-darmstadt.de

Timeline

• topic selection: 8.11 (Sunday after kick-off)
• paper submission: 18.12
• peer review submission: 15.01
• feedback meetings: 18.01-22.01
• camera ready: 29.01
• presentation day: 12.02

Start Early!
• Please let us know if you have a

conflict with the presentation day

The Seminar

• Start with several papers of a specific topic
• Understand the general area
• Find more references to complete your

understanding

• Write your own paper about in that area
– Tell a coherent story about one aspect of the topic.
– Please present technologies, with your own words and

your own examples.
E.g. : the same running example through the paper

What you learn

• Introduce students to the core techniques of
scientific work
– Process of writing and publishing research papers
– Review a paper
– Give a scientific talk

• Learn an advanced topic on PL
– Compare and evaluate existing solutions

Reviews

• A summary of the paper
– To demonstrate that you read and understood

• Suggestions for the author, regarding both content
and presentation
– Be realistic and concrete

• A list of the major positive and negative issues
– Honest! mainly used to grade the reviewer, not the paper

Grades

• Find the details and more info of how to write the
paper on the website

• Paper 40 %
• Talk 40 %
• Reviews 20 %

• Once more. Tell a nice story. Compare things. Find
advantages and limitations. Provide examples in
different cases

Implementation of
Programming Languages

(Project)

Intro

• Goal: Implement a software artifact supporting
current research.

• General scope: programming languages:
– Extensions, code generators
– Tools, IDEs
– Analysis techniques
– Performance assessments
– Prototypes with innovative abstractions

Process

• Project details are specified by discussing with your
supervisor.
– Periodic discussions/meetings.

• Allocate one day per week to work on the project
– Send us an email about the weekly progress.
– Not an issue If you have no time for 1 or 2 weeks

• Don’t abuse this.

• Presentation and delivery of the artifact and the
documentation: end of the semester.

Guidelines and Suggestions

• Deliver RUNNING code
• Deliver some documentation
• Optional: final presentation / demo to discuss your

work

• Team work is good!
– Organize a team even with people you don’t know (yet)

Grades

• How much of the specification was implemented?
• The code has to run
• What is the overall quality of the code?
– E.g. is it painful to modify/extend it?
– Is it self-documenting?

• What is the quality of the “documentation”?

SEMINAR TOPICS

Programming Languages
for Smart Contracts

"an open, distributed ledger that can record
transactions between two parties efficiently and in a
verifiable and permanent way.”

• How to write smart contracts?
• Need a (specification?)

language…

SEMINAR

Some examples

• "Functional Smart Contracts”
– Chakravarty et al. 2019. Functional Blockchain Contracts.
– Seijas and Thompson. 2018. Marlowe: Financial Contracts on

Blockchain. ISoLA.
• Object-Oriented Smart Contracts

– Coblenz. Obsidian: a safer blockchain programming language.
ICSE 2017.

– Coblenz, et al. 2019. User-Centered Programming Language
Design in the Obsidian Smart Contract Language.

– Coblenz, et al. 2019. Obsidian: Typestate and Assets for Safer
Blockchain Programming

– Schrans et al. Writing safe smart contracts in Flint. Programming
2018

Programming models for
Distributed Computing

• Very popular in the ’80, early ‘90
• A lot of ideas still influential
– RMI, CORBA, Argus, Emerald, Akka, Linda

• Survey of the most
important approaches

https://github.com/heathermiller/dist-prog-book

SEMINAR

Information Flow in
Languages for Distributed Systems

• Distributed systems can leak private data
• Information flow type systems can prevent it
– Attach security labels to values
– Reject programs in case of violation

• Current Research topics
– Interaction with distribution
– Boundaries with databases
– Big data
– …

https://en.wikipedia.org/wiki/Information_flow_(information_theory)

var l, h
if h = true
then

l := 3
else

l := 42

SEMINAR

Macros and Metaprogramming

• tools and ideas on how to program interpreters and
compilers

• survey on history of macro systems
• what features should modern languages support?

SEMINAR

TOPICS

Consistency in PL

• Distributed systems
adopt a consistency level
– Eventual consistency
– Causal consistency
– …

• So far, considered only in the middleware

Consistency in Distributed Systems

https://dl.acm.org/citation.cfm?id=2611290
https://dl.acm.org/citation.cfm?id=3104044

Consistency Levels form a Lattice

No consistency

Eventual consistency

Serializability

Causal consistency…

23

Eventual consistency
Causal consistency
Fifo consistency
….

ConSysT Programming Framework

class Concert {
Date date;
Ref<@Weak ConcertHall> hall;
Ref<@Weak Band> band;
Ref<@Strong Counter> soldTickets;

…
}

Programming model supports
explicit consistency levels

Information flow static analysis
ensures safe mixing of consistency levels

https://consyst-project.github.io/

Extending ConSysT

• Consistency can be associated to types e.g., High[Int]
– Design consistency for operations, e.g., shopCheckout()

• Language support for multiple consistency levels on
top of existing middleware, e.g., Cassandra

PROJECT & S.

CRDTs
A data structure which can be replicated across multiple computers where
replicas can be updated independently and concurrently without coordination,
and where it is always mathematically possible to resolve inconsistencies
Example: collaborative editing
CRDT: Grow-only counter

Applications
• Redis: a distributed, highly available and scalable in-memory database
• Riak: a distributed NoSQL key-value data store based on CRDTs
• Facebook implements CRDTs in their Apollo low-latency "consistency at scale" database

Delta CRDTs

• Implementation of CRDTs in Scala

• Delta replication for efficiency

• Composability of CRDTs.
How to derive new CRDTs by composition?

https://arxiv.org/abs/1803.02750

PROJECT & S.

Tierless/Distributed Languages

Tierless Languages

• Traditional development of Web applications
– Server side (e.g. servlet, php script, ..)
– Client side (Javascript, …)

• Tierless languages unify the development of server-
side and client-side components
– Network communication is hidden
– The compiler automatically generates the code for the

server and for the client

https://github.com/scala-loci

Placement Types

val message: Event[String]on Registry

trait Registry extends Peer
trait Node extends Peer

Peers

Placement Types

= placed { getMessageStream() }

www.scala-loci.github.io

Dynamic placement

Data streams
cross Tier
boundaries

Compiler
splits the
code

Application
deployment

Dynamic
Placement

PROJECT & S.

IoT & Edge: Drones

Dynamic
Placement

PROJECT & S.

Distributed Garbage Collection

• Expensive in the general case!

• Use a type system to track ownership
– The type system guarantees that there

are no other refs to an object
– The object can be deleted

https://soft.vub.ac.be/amop/research/dgc

PROJECT & S.

Secure Tierless Languages

• Place functionalities based on privacy requirements
– Function f(x) may run on the server or on the client
– Decide based on the privacy of x

Challenges:
• Information flow analysis
• Decision at runtime?

Secure Web Applications via Automatic Partitioning

PROJECT & S.

Secure Tiers

• Intel Software Guard Extensions (SGX)
• Code running inside secure enclave can be seen as a

separate tier

• Automate secure deployment

PROJECT & S.

Dynamic Software Updates

• Complex component-based
systems require updates
without downtime

• When is an update safe?

• Develop a system for
safe dynamic updates

https://dl.acm.org/citation.cfm?id=3084561

PROJECT & S.

Distributed Reactive Programming

Reactive Programming

List<String> myList = Arrays.asList("a1", "a2", "b1", "c2", "c1");
myList.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println);

www.rescala-lang.com

IoT & Edge: Distributed Dataflow

• Manage dataflow graph of many devices

• Use device specific effects for inputs & outputs

• Efficient compilation

• Failure modes? Dynamic placement? CRDTs?

PROJECT & S.

Delay Tolerant Routing

• Some networks have long delays
– Inter Planet!
– Hand USB sticks to your friends
– IP Datagrams on Avian Carriers (RFC 1149)

• Special routing protocols exists
• Integrate with

dataflow

PROJECT & S.

Staged Dataflow Graph

• dotty (new scala version) has a staged macro system
• can this be used to imlement dataflow graphs during

compile time?

PROJECT & S.

QUESTIONS?

